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Preface

Greetings,

Partial Differential Equations: A Quick Guide is based on my lecture notes
from MA411: Topics in Differential Equations - Partial Differential Equations
with professor Evan Randles at Colby. The contents are somewhat based on
Farlow’s Partial Differential Equations for Scientists and Engineers.

Enjoy!
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Chapter 1

Overview and Classification

1.1 What in the world is a PDE?

We shall begin with what PDEs are.

Definition 1.1.1. A partial differential equation (PDE) is an equation relating
a function of several variables ψ(t, ~x) to its partial derivatives: ∂x1ψ, ∂2

x1x2
ψ, etc.

A note on notation:

∂2ψ

∂x1 ∂x2
≡ ∂2

x1x2
ψ ≡ ∂x1

∂x2
ψ.

1.2 Some notable examples

Let us look at a couple of famous PDEs:

Example 1.2.1. Laplace Equation:

∆ψ = ∇2ψ =
∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2
= 0.

Example 1.2.2. Poisson’s Equation:

∆ψ = ∇2ψ = F (x, y, z)

We take note of the Laplacian or the Laplacian operator:

∆ψ ≡ ∇2ψ =
∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2

The Laplacian operator takes a function ψ linearly to another function ∇2ψ.
The Laplacian is one of the most important objects in mathematics, as it touches

7



8 CHAPTER 1. OVERVIEW AND CLASSIFICATION

probability theory, potential theory, partial differential equations, mathematical
physics, harmonic analysis, number theory, etc.

Another note on notation: the symbols ∆ and ∇2 will be used interchange-
ably in this text. The ∇2 represents the divergence of the gradient.

Let us look at some more examples to see the ubiquity of the Laplacian in
PDEs:

Example 1.2.3. The heat equation:

∂ψ

∂t
= ∇2ψ.

The heat equation describes heat transfer over time. But there is also a con-
nection between the heat equation and probability theory. In particular, the
Gaussian function:

1√
4πt

e−
x2

4t

solves the heat equation.

Example 1.2.4. The wave equation:

∂2ψ

∂t2
= ∇2ψ.

The wave equation describes physical vibrations. The second t-derivative in the
equation is strongly correlated to Newton’s second law of motion.

Example 1.2.5. The Schrödinger equation:

i~
∂ψ

∂t
= − ~2

2m
∇2ψ + V (t, ~x)ψ.

One can hardly talk about PDEs without mentioning the Schrödinger equation.
There is a strong resemblance between the Schrödinger equation and the wave
equation. Of course, this is no coincidence, as the Schrödinger equation is
postulated based on a description of a harmonic oscillator.

Our next example does not include the Laplacian operator.

Example 1.2.6. The telegraphic equation:

∂2ψ

∂t2
=
∂2ψ

∂x2
+ α

∂ψ

∂t
+ βψ.

The telegraphic equation describes the transfer of information.
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1.3 Vocabulary

• The function ψ appearing in a given PDE is called the “dependent vari-
able.”

• The variables t, x1, x2, . . . are called “independent variables.”

1.4 Our goals

Our goal is, given a PDE, to find a sufficiently differentiable function which
satisfies it that is subject to boundary and initial conditions.

1.5 Our plan

Here are the key concepts we will explore in this text:

• Modeling: Formulate same physical problem in terms of PDEs.

• Learn how to solve (some) PDEs, subjection to initial conditions and
boundary conditions. This means we will be looking at ideas like:

– Separation of variables, in order to reduce a PDE into a system of
ODEs.

– Integral transforms, in order to reduce the number of independent
variables.

– Change of coordinates, in order to change a complicated PDE into
another one which is easier to solve.

– Eigenfunction expansion, which generally goes under the Sturm-Liouville
theory.

– Numerical methods, as most PDEs cannot be solved analytically.

1.6 Classification

• The order of a PDE is the highest order of partial derivatives appearing
(non-trivially) in the PDE.

Example 1.6.1.

∂ψ

∂t
= ∇2ψ

is a second-order PDE.

Example 1.6.2.

∂ψ

∂t
= ∂4

xψ

- the biharmonic heat equation, is a fourth-order PDE.
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• Linearity: A PDE is linear if the function ψ and its derivatives appear in
a linear way.

Example 1.6.3. All second-order linear PDEs in 2 variables are of the
form:

A
∂2ψ

∂x2
+B

∂2ψ

∂x∂y
+ C

∂2ψ

∂y2
+D

∂ψ

∂x
+ E

∂ψ

∂y
+ Fψ = G

Note: define

L[ψ](x, y) = A
∂2ψ

∂x2
+B

∂2ψ

∂x∂y
+ C

∂2ψ

∂y2
+D

∂ψ

∂x
+ E

∂ψ

∂y
+ Fψ

then we get

L[u] = G.

We get a linear map L : ψ → L[ψ]. So, for γ, σ ∈ R

L[γu+ σv)] = γL[u] + σL[v].

This observation justifies the moniker “linear.” Next, we say that L[ψ] = G is
homogeneous if G = 0. The equation is inhomogeneous if G(x, y) 6= 0 for
some x, y.

If A,B,C,D,E, F are constants, then L[ψ] = G is said to be a constant-
coefficient equation. Otherwise (at least one of A,B,C,D,E, F is a function
of x, y in some non-trivial way), it is said to have variable coefficients.

Example 1.6.4. Classify: ut = sin tuxx.

It is a linear PDE, A = sin t, B = C = D = F = 0, E = −1, G = 0, variable
coefficient, and homogeneous.

Example 1.6.5. Classify: uxx − sinu = 0.

Not linear.

Example 1.6.6. Classify: xux − yuy = 0.

First-order homogeneous linear PDE with variable coefficients.

Note: Linear PDEs are quite well understood. Notable mathematicians
who established theories of linear PDEs: Ehenpres(?), Hille, Browder, Soboher,
Nash, Nierenburd, Friedmann, Schwartz, Hormander (Fields, 1962), Gardiy.

Note: Constant coefficient equations are much easier to solve than vari-
able coefficient equations, because Fourier analysis makes a lot of the constant
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coefficient problems easy.

Note: Non-linear equations are really hard, and there is no general theory.
Each type of non-linear problem demands its own special techniques (well, if
they exist at all).

1.7 Types of second order linear PDE

Parabolic: L[ψ] = G is said to be parabolic if B2 − 4AC = 0 (A,B,C don’t
have to be constant coefficients - so the PDE can be parabolic in some region
and not elsewhere).

Example 1.7.1. The heat equation

ut = uxx

is a parabolic equation, because A = 1, E = −1, B = C = 0.

Elliptic: L[ψ] = G is elliptic if B2 − 4AC < 0.

Example 1.7.2. Laplace’s equation

δu = uxx + uyy = 0

is elliptic, because A = C = 1, B = 0.

Hyperbolic: if B2 − 4AC > 0.

Example 1.7.3. The wave equation:

utt = uxx

is hyperbolic, because B = 0, A = 1, C = −1.
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1.8 Lesson 1: Selected Problems & Solutions

Problem (3). If u1(x, t) and u2(x, t) satisfy L[u] = G, then is it true that the
sum satisfies it? If yes, show.

Solution (3). Yes. We have established, in class, that if we define L : u→ L[u]
where

L[u] = Auxx +Buxt + Cutt +Dux + Eut + Fu = G,

then L[u] is a linear map, which can be readily shown:

L[µu1 + νu2] = µ(Au1xx +Bu1xt + Cu1tt +Du1x + Eu1t + Fu1)

+ ν(Au2xx +Bu2xt + Cu2tt +Du2x + Eu2t + Fu2)

= µL[u1] + νL[u2].

So, the sum of u1 and u2 also satisfies L[u] = G.

Problem (4). Probably the easier of al PDEs to solve is the equation

∂u(x, y)

∂x
= 0.

Can you solve this equation? Find all functions u(x, y) that satisfy it.

Solution (4). The PDE suggests that u does not depend on x. This means
that u(x, y) is just some function of y, i.e. u(x, y) = ũ(y).

Problem (5). What about the PDE

∂2u(x, y)

∂x ∂y
= 0?

Can you find all solutions u(x, y) to this equation? How many are there? How
does this compare with an ODE like

d2y

dx2
= 0

insofar as the number of solutions is concerned?

Solution (5). This PDE is a first-order, linear, homogeneous PDE with B =
1, A = C = D = E = F = 0. Since B2−4AC = 1 > 0, the PDE is hyperbolic.
The PDE suggests that uy has no x-dependence. From the previous problem,
we know that uy = f ′(y). Taking the antiderivative with respect to y, we get

u(x, y) =

ˆ
f ′(y) dy = f(y) + g(x) .
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Since the variables x, y are exchangeable (by the equality of mixed partials),
following the same argument starting with ux gives the same form for u(x, y).

The ODE D2[y] = y′′(x) = 0 is a second-order, linear, homogeneous ODE. We
know that the solution space has dimension of 2:

ker(D2) ={1, x}.

So while there are infinitely many solutions, only two linearly independent
solutions are sufficient to generate all solutions. Whereas there are infinitely
many linearly independent solutions to the PDE. We can simply generate a new
(linearly independent from f(y) + g(x)) solution by multiplying f(y) by y or
g(x) by x.
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Chapter 2

Diffusion-type problems
(parabolic equations): A
study of the heat equation

2.1 An experiment

We consider a copper rod of length L, which allows heat to transfer along the rod,
but is insulated in such a way that heat does not transfer laterally across/out
of the rod.

15
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At time t = 0, the temperature in the rod is known.

u(0, x) = T0

The ends of the rod are placed in thermal baths which hold their temperatures
fixed. So, at x = 0, u(t, 0) = T1 and at x = L, u(t, L) = T2 for all t > 0.

2.2 The Mathematical Model

This behavior is modeled by the heat equation.

ut = α2uxx,

where α ∈ R, determined by the thermo-character of the rod. ut is the rate of
change of temperature in time, and uxx is the concavity profile in space.

Some justification for the heat equation: we look at the spatial difference
quotient. For small change in x, ∆x:

uxx ≈
ux(t, x+ ∆x)− ux(t, x)

∆x

≈ (u(t, x+ ∆x)− u(t, x))/∆x− (u(t, x)− u(t, x−∆x))/∆x

∆x

≈ 1

∆x2
(u(t, x+ ∆x) + u(t, x−∆x)− 2u(t, x))

≈ 2

∆x2

(
u(t, x+ ∆x) + u(t, x−∆x)

2
− u(t, x)

)
So, uxx ∝ the difference between the average temperatures among neighboring
points and the temperature at x.

Assume that ut = α2uxx, then if uxx < 0, then ut < 0, i.e. temperature
decreases in time. If uxx > 0, then ut > 0, i.e. temperature increases in time.
If uxx = 0, the temperature stays fixed.
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2.3 Boundary Conditions

In contrast to ODEs, PDE have different types of constraints which are com-
bined with the PDE to form well-posed problems, where “well-posed” means
that a unique solution exists. Our conditions are often (and will almost always)
be physically motivated.

Let us revisit the heat equation.

ut = α2uxx, t > 0, 0 ≤ x ≤ L.

The temperatures at the ends x = 0 and x = L are fixed T1 and T2 by the
thermal baths, so the boundary conditions are

BCs =

{
u(0, t) = T1

u(L, t) = T2

∀t > 0.

Here “boundary” refers to the boundary of [0, L].

2.4 Initial Conditions

Our problem also involves evolution in time, we have an initial condition of the
form

u(x, 0) = T0 or u(x, 0) = u0(x)∀x ∈ [0, L]

where T0 is the initial constant temperature of the rod and u0(x) is the initial
temperature which is allowed to vary (some spatial distribution). All together,
we form an initial boundary value problem, an IBVP of the form

ut = α2uxx, t > 0, x ∈ [0, L]

u(0, t) = T1,∀t > 0

u(L, t) = T2,∀t > 0

u(x, 0) = T0,∀x ∈ [0, L]

2.5 A Couple of Variants

2.5.1 Lateral Heat Loss

This allows for heat to be transferred laterally into the rod according to Newton’s
law of cooling. So the new heat equation is

ut = α2uxx − β(u− u0), β > 0

where u0 is the outside temperature.
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2.5.2 Internal Heat Source

If, by some non-diffusive heat source, heat is added into the rod at (t, x), the
equation is

ut = α2uxx + f(x, t)

where f(x, t) is the heat added to the rod, internally. This PDE is inhomoge-
neous.

2.5.3 Diffusion-convection Equation

ut = α2uxx − vux

If u describes the amount (not heat) pollutant, then the term −vux describes
the flow of additional pollutant introduced by the moving particles.

2.5.4 Variable-coefficients case

When the thermal make up of the rod (its thermal character) is allowed to vary
according to a variable diffusivity coefficient, i.e. α → α(x), then the relevant
heat equation is

ut = α2(x)uxx.

So, let’s say

α(x) =

{
αCopper, x ∈ [0, L/2]

αBronze, x ∈ [L/2, L]



Chapter 3

Other types of Boundary
Conditions

3.1 Type 1

Let’s revisit the original heat equation: ut = α2uxx. If we force the rod ends
to have time-dependent temperatures: g1(t) and g2(t) at x = 0 and x = L
respectively, then our boundary conditions are

BCs =

{
u(0, t) = g1(t)

u(L, t) = g2(t)
∀t > 0.

If instead we’re studying the heat flow on a circular plate, i.e., where u =
u(t, t, θ), and the heat EQ is

ut = α2∇2u = α2

(
urr +

1

r
ur +

1

r2
uθθ

)
.

Here, the boundary conditions look like u(t, r0, θ) = g(t, θ), i.e. we force the
disk to have temperature g(t, θ) along the boundary.

3.2 Type 2 (more realistic)

We take into account heat transfer to rod ends via thermal bath. Suppose that
our rod is placed in bath (liquid) at each end of temperature g1(t) and g2(t)
respectively.

In view of Newton’s law of cooling, the heat flux at a rod end is h(u(t, 0)−
g(1)) at x = 0 and h(u(t, L) − g2(t)) at x = L, and h is some constant. Next,
we introduce Fourier’s law of heat flux (empirical):

∂u

∂n
= k ×Heat flux

19
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where n is the inward normal direction to the boundary, and k ∈ R. At x = 0:{
∂u
∂n = ux(t, 0) = kh(u(t, 0)− g1(t)), x = 0
∂u
∂n = −ux(t, L) = kh(u(t, L)− g2(t)), x = L

.

So, the BC for Type 2 is the following{
ux(t, 0) = kh(u(t, 0)− g1(t))

u2(t, L) = −kh(u(t, L)− g2(t))

The 2-D plate analogue is the following. We require (since r is outward)

−∂u
∂r

= −kh(u(t, r0, θ)− g(t, θ))

where g(t, θ) is the temperature of the bath surrounding the plate.

3.3 Type 3: Flux specified - including isolated
boundaries

The rod ends are insulated, i.e., no heat flows in or out of the rod ends. So the
boundary conditions are

ux(0, t) = ux(L, t) = 0∀0 < t <∞.

In two variables (a disk), the analogous BC is

ur(t, r0, θ) = 0∀0 < t <∞, 0 ≤ θ ≤ 2π.

3.4 Type 4: Mixed

We can mix BCs. Suppose that one end of the rod has zero flux condition (type
3) and the other end is submerged in a liquid (type 2).
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So, the IBVP is 
ut = α2uxx

ux(t, L) = 0

ux(t, 0) = −λ(u(t)− g1(t))∀t > 0

u(0, x) = u0(x)∀0 ≤ x ≤ L
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Chapter 4

Derivation of the Heat
Equation

Main idea: Conservation of (Heat) Energy. Assumptions:

1. The rod is a thermally homogeneous material

2. The temperature is constant across all cross-sections

3. The rod is laterally insulated (no heat loss laterally)

Using conservation of energy, we have the following: the change in thermal
energy in the cross section x to x+ ∆x should be equal to the flux of the heat
through the “ends” at x and x+ ∆x plus any external heat produced by some
source (e.g. heat element). Some physical constants:

1. C: thermal capacity of the rod

2. ρ: density of the material of the rod

3. A: area of cross section

4. k: thermal conductivity

Total heat inside is

ˆ ∆x+x

x

cρAu(s, t) ds.

23
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The flux through the ends is

kA(ux(x+ ∆x, t)− ux(x, t)).

The external energy is

A

ˆ x+∆x

x

f(t, s) ds

where f(t, s) is the energy added at time t and x ≤ s ≤ x+ ∆x. All together

d

dt

ˆ ∆x+x

x

cρAu(s, t) ds = kA(ux(x+ ∆x, t)− ux(x, t)) +A

ˆ x+∆x

x

f(t, s) ds.

Assuming that u is nice enough, that

d

dt

ˆ ∆x+x

x

cρAu(s, t) ds =

ˆ ∆x+x

x

cρAut(s, t) ds.

Also, the MVT for integrals says that if G is continuous on the interval [a, b]
then ∃c ∈ [a, b] such that

ˆ b

a

G(s) ds = G(c)(b− a).

Therefore ∃χ ∈ [x,∆x] such that
ˆ ∆x+x

x

cρAut(s, t) ds = cρAut(t, χ)∆x

and ∃η ∈ [x,∆x] such that

A

ˆ x+∆x

x

f(t, s) ds = Af(t, η)∆x.

Combining all of these gives ∀t > 0,∃χ, η ∈ [x,∆x] such that

cρAut(t, χ)∆x = kA(ux(t, x+ ∆x)− ux(t, x)) +Af(t, η)∆x

ut(t, χ) =
k

ρc

ux(t, x+ ∆x)− ux(t, x)

∆x
+

1

cρ
f(t, η).

As ∆x→ 0, η, χ→ x

ut(t, x) =
k

ρc
uxx(x, t) +

1

cρ
f(t, x)

ut(t, x) =
k

ρc
uxx(x, t) + F (t, x)

ut(t, x) = α2uxx(x, t) + F (t, x),

where

α2 =
k

ρc

F (t, x) =
1

cρ
f(t, x).
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Separation of Variables -
First method of solution

Main idea: If the IBVP is posed on a rectangle, e.g. t > 0, x ∈ [0, L], and the
PDE is linear, it is often the case that this method reduces the PDE into ODEs.

5.1 Example: The heat equation

ut = α2uxx, t > 0, x ∈ [0, 1]

We shall accompany this with so-called linear homogeneous BCs:

αu(t, 0) + βux(t, 0) = 0

γu(t, 1) + δux(t, 1) = 0.

In fact, we specify further to assume

u(t, 0) = 0 = u(t, 1)∀t > 0.

We make an ansatz that solutions are of the form

u(t, x) = T (t)X(x).

(Maybe not solutions but builidng blocks of solutions). Plug into the PDE, we
get

ut(t, x) = T ′(t)X(x) = α2∂2
x(u(t, x)) = α2T (t)X ′′(x).

Separating variables gives

T ′(t)

α2T (t)
=
X ′′(x)

X(x)
∀t > 0, x ∈ [0, 1].

25
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For this equation to hold for all independent t and x, we must have that

T ′(t)

α2T (t)
=
X ′′(x)

X(x)
= Const∀t > 0, x ∈ [0, 1].

This immediately gives two ODEs connected by a constant k:{
T (t) = α2kT (t)

X ′′(x) = kX(x)
.

By solving these equations, we hope to learn something aboaut k. The solution
to the first solution is obvious:

K(t) = Aeα
2kt∀t > 0.

For physically reasonable solutions, we expect that the limit as t → ∞ of
u(t, x) = 0 and so, T (t) 6→ ∞ as t → ∞, this forces k < 0. Thus, we write
k = −λ2, λ ∈ R, and denote

uλ(t, x) = T (t)X(x) = X(x)Ae−α
2λ2t.

Next, the spatial ODE gives

X ′′(x) + λ2X(x) = 0.

A general solution for this equation is

X(x) = A sin(λx) +B cos(λx).

By absorbing multiplcative constants

uλ(t, x) = e−α
2λ2t (A sin(λx) +B cos(λx)) .

Though we still don’t know what λ is, let us force this solution to satisfy the
boundary conditions to learn more. Since the boundary conditions require that
u(t, 0) = 0 = u(t, 1), we require that{

B = 0

λ = ±nπ

where n ∈ N, for non-trivial solutions (where A 6= 0). Thus, with separation of
variables, we find that

un(t, x) = Ane
−(nαπ)2 sin(nπx).

This is a solution for any n ∈ N and An ∈ R. Just to be sure that we haven’t
made an error, we can readily verify this solution. This is left as an exercise to
the reader.
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Note that we still have some “degrees of freedom” - An and n. So, we have
established the existence of many solutions, for each n ∈ N and An ∈ R. Now,
we make use of the principle of superposition to generate more solutions. The
principle of superposition (works for linear DEs) says that all convergent sums
of solutions are solutions. More generally, for any collection {An} ⊆ R,

u(t, x) =

∞∑
n=1

Ane
−(nπα)2 sin(nπx)

is also a solution. But divergence could be a problem here. It might be that
u(t, x) fails to exist, or differentiation might not work. But worry not, since

the presence of the term e−(nπα)2 makes this series always converge. And so,
we have that for any sequence {An}, u(t, x) defined in this way solves the DE
ut = α2uxx and satisfies the boundary conditions u(t, 0) = 0 = u(t, 1). The
problem of satisfying the initial condition u(0, x) = u0 becomes one of finding
the “right” constants An so that

u(0, x) =

∞∑
n=1

An sin(nπx) = u0(x).

The term on the left hand side is called the trigonometric series. The ques-
tion now becomes whether it is possible to find the sequence {An} ⊆ R so
that

u(0, x) =

∞∑
n=1

An sin(nπx) = u0(x).

Another question would be which function u0(x) can be expanded as a trigono-
metric series as above.

Example 5.1.1. Consider

u0(x) =
1

2
sin(2πx) +

1

50
sin(201πx).

We see that

An = 0, A2 =
1

2
, A201 =

1

50
∀n 6= 2, 201.

Example 5.1.2. What about

u0(x) =

{
x, 0 ≤ x < 1

2

1− x, 1
2 < x ≤ 1

or

u0(x) = 1?
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It’s clear that we must have that u0(0) = u1(1) = 0, otherwise this cannot
be done. To treat otherwise, one needs a cosine term. But what if u0(0) =
u0(1) = 0, but u0(x) is very bad? Suppose that this can be done. Using the
property that

ˆ 1

0

sin(nπx) sin(mπx) =
1

2
δmn ,

we use Fourier’s trick: multiply both sides of the u0(x) expansion by sin(mπx)
and integrate:

ˆ 1

0

u0(x) sin(mπx) =

∞∑
n=1

ˆ 1

0

An sin(nπx) sin(mπx) dx

=

∞∑
n=1

Am
1

2
δmn .

So this gives

Am = 2

ˆ 1

0

u0(x) sin(mπx) dx∀m ∈ N.

This gives a prescription for finding the sequence {Am} so that the expansion
works. So, we might ask, given a function u0(x) with value 0 at x = 0, 1 and
define

Am = 2

ˆ 1

0

u0(x) sin(mπx) dx ∀m ∈ N,

when does

u0(x) =

∞∑
n=1

An sin(nπx)?

Usually, this works perfectly, but around 1802, the mathematician DuBois Rey-
mond found an example for which the Fourier series does not hold. The exact
class of such functions was determined explicitly in 1962 by UCLA professor L.
Carelson. The answer is L2[0, 1] - square integrable functions.

Example 5.1.3. Now, let’s find An so that

u0(x) =

{
x, 0 ≤ x < 1

2

1− x, 1
2 < x ≤ 1

.

Well,

An = 2

ˆ 1

0

u0(x) sin(nπx) dx = 2

ˆ 1
2

0

x sin(nπx) dx+ 2

ˆ 1

1
2

(1− x) sin(nπx) dx

= 2

ˆ 1
2

0

x sin(nπx) dx− 2

ˆ 1

1
2

+x sin(nπx) dx+ 2

ˆ 1

1
2

sin(nπx) dx
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Integration by parts...ˆ
x sin(kx) dx =

−1

k
x cos(kx)−

ˆ
− cos(kx)

k
dx =

1

k2
sin(kx)− x cos(kx)

k
.

So

2

(
1

(nπ)2
sin(nπx)− x

πn
cos(nπx)

) ∣∣∣∣1/2
0

=
2

(nπ)2
sin
(nπ

2

)
− 1

nπ
cos
(nπ

2

)
.

2

ˆ 1

1
2

(1− x) sin(nπx) dx =
2

nπ

(
cos
(nπ

2

)
− cos(nπ)

)
.

2

ˆ 1

1
2

x sin(nπx) dx =
2

nπ
cos(nπ)− 2

(nπ)2
sin
(nπ

2

)
+

1

nπ
cos
(nπ

2

)
.

So, all together,

An =
4

(nπ)2
sin
(nπ

2

)
.

So our series is

u0(x) =

∞∑
n=1

4

(nπ)2
sin
(nπ

2

)
sin(nπx)

This converges nicely.

Recap: to solve our IVBP, we defines

An = 2

ˆ 1

0

u0(x) sin(nπx) dx, n ∈ N

and then (provided that things converge nicely)

u(t, x) =

∞∑
n=1

Ane
−(απn)2t sin(nπx)

is the solution. More generally, on the interval [0, L] for the same IVBP with
u(t, 0) = u(t, L) = 0 and u(0, x) = u0(x), x ∈ [0, L], then the solution is given
by

u(t, x) =

∞∑
n=1

Ane
−(απn/L)2t sin

(nπx
L

)
where

An =
2

L

ˆ 1

0

u0(x) sin
(nπx
L

)
dx, n ∈ N.

One more note: as t→∞, the solution is dominated lower order terms

u(t, x) ≈ A1e
−(απ/L)2t sin

(πx
L

)
.
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Chapter 6

Transforming
Nonhomogeneous Boundary
Conditions into
Homogeneous ones

6.1 Inhomogeneous BCs to Homogeneous Ones

Question: how can we solve inhomogeneous BCS? Given k1, k2 ∈ R and u0(x),
can we solve 

ut = α2uxx

u(t, 0) = k1

u(t, L) = k2

u(0, x) = u0(x)

Idea: in the steady-state, we expecet that ut = 0, so u(x, t) → u(x) =
Cx+D. So, the steady state is

S(t, x) = k1

(
1− x

L

)
+ k2

( x
L

)
.

To solve the problem, we assume

u(t, x) = S(t, x) + U(t, x)

where S(t, x) is the steady-state solution, and U(t, x) is the transient solution.
Let’s plug u = S + U into our problem to learn something about U . First,

ut = St + Ut = α2(Sxx + Uxx)

Ut = α2Uxx.
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Using the BCs in out IBVP,

k1 = u(t, 0) = S(t, 0) + U(t, 0) = k1 + U(t, 0).

So

U(t, 0) = 0.

And similarly,

U(t, L) = 0.

Finally,

u0(x) = u(0, x) = S(0, x) + U(0, x)

and hence

U(0, x) = u0(x)− S(0, x).

So, summary: u(t, x) satisfies the IBVP ⇐⇒

u(t, x) = S(t, x) + U(t, x) = k1

(
1− x

L

)
+ k2

( x
L

)
+ U(t, x)

where U(t, x) solves the auxiliary IBVP:


Ut = α2Uxx t > 0, 0 < x < L

U(t, 0) = 0 t > 0

U(t, L) = 0

U(0, x) = u0(x)− S(0, x) x ∈ [0, L]

,

which we know how to solve using separation of variables and Fourier series.

6.2 Time Varying BCs into Zero BCs


ut = α2uxx , t > 0, 0 < x < L

α1u(t, 0) + β1ux(t, 0) = g1(t)

α2u(t, L) + β2ux(t, L) = g2(t)

u(0, x) = u0(x) , x ∈ [0, L]

,

where α1, α2, β1, β2, g1(t), g2(t), u0(x) are all known. To solve this, we push
forwardour idea of steady-state-ish and transient solutions. We assume that

u(t, x) = S(t, x) + U(t, x)
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where

S(t, x) = A(t)
(

1− x

L

)
+B(t)

x

L

Can we find A(t) and B(t) in terms of α1, α2, β1, β2, g1(t), g2(t), u0(x)? We want
to choose S(t, x) so that it absorbs all of the complicated nature of the BCs for
u(t, x). So, we can make S satisfy u′s BCs.

S(t, 0) = A(t)

Sx(t, 0) =
B(t)−A(t)

L
= Sx(t, L)

S(t, L) = B(t).

So we have

α1S(t, 0) + β1Sx(t, 0) = g1(t)

α1A(t) +
β1(B(t)−A(t))

L
= g1(t)

and

α2S(t, L) = β2Sx(t, L) = g2(t)

α2B(t) +
β2(B(t)−A(t))

L
= g2(t).

Rewriting gives

Γ

(
A(t)
B(t)

)
=

(
α1 − β1

L
β1

L

−β2

L α2 + β2

L

)(
A(t)
B(t)

)
=

(
g1(t)
g2(t)

)
So (

A(t)
B(t)

)
= Γ−1

(
g1(t)
g2(t)

)
=

(
ρ11(t) ρ12(t)
ρ21(t) ρ22(t)

)(
g1(t)
g2(t)

)
Of course, this requires Γ to be invertible, i.e,

det(Γ) =

(
α1 −

β1

L

)(
α2 +

β2

L

)
+
β1

L

β2

L
= α1α2 +

α1β2

L
− α2β1

L
6= 0.

Assuming this is true

S(t, x) = (ρ11g1(t) + ρ12g2(t))
(

1− x

L

)
+ (ρ21g1(t) + ρ22g2(t))

x

L

Now, let us see what this implies for U .

ut = St + Ut = Ut = α2(Sxx + Uxx) = α2Uxx.
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So, once again

Ut = α2Uxx − St.

Also, by an easy calculation, we have that u satisfying the inhomogeneous BCs
implies

U(t, 0) = U(t, L) = 0.

And further, that

U(0, x) = u0 − S(0, x)

is just a linear function of x. So, by setting

S(t, x) = (ρ11g1(t) + ρ12g2(t))
(

1− x

L

)
+ (ρ21g1(t) + ρ22g2(t))

x

L
,

we see that

u(t, x) = U(t, x) + S(t, x)

satisfies a IBVP where the heat equation is homogeneous, but the BCs are very
complicated compared to the new inhomogeneous heat IBVP.

Ut = α2Uxx − St
Ux(L, t) = 0

U(t, L) = 0

U(0, x) = u0(x)− S(0, x)

.

Moral: problems with complicated BCs can often be transformed into equiva-
lent problems with simple BCs at the cost of making the PDE more complicated.

Question: Under what conditions on the first IBVP is our new IBVP homo-
geneous? The answer is that a sufficient condition is for g1, g2 to be constant.
In this realm, S(t, x) = S(x) nad is thus a “real” steady-state solution.



Chapter 7

Solving more complicated
problems directly: An
invitation to
Strum-Liouville theory

Consider the following IBVP:
ut = α2uxx

u(t, 0) = 0

ux(t, 1) + hu(t, 1) = 0

u(0, x) = u0(x)

.

We can solve this using separation of variables. First, we seek product solutions
of the form:

u(t, x) = T (t)X(x).

By asking that ut = α2uxx, we obtained

T ′(t)

α2T (t)
=
X ′′(x)

X(x)
= µ

where µ is a constant. What are the possibilities for µ?

7.1 µ > 0

If µ > 0, we obtain

u(t, x) = Aeα
2µtX(x).
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But as eα
2µt →∞ as t→∞, we reject this solution on physical grounds.

7.2 µ = 0

If µ = 0, then T ′(t) = X ′′(x) = 0, so

u(t, x) = Ax+ b.

To satisfy the BCs in this case:

u(t, 0) = 0 = A× 0 + b.

So, b = 0. Next,

ux(t, 1) + hu(t, 1) = 0.

So, A+ hA = 0, so A = 0. This is just the trivial solution.

7.3 µ < 0

Let µ = λ2, then we have

T (t) = Ae−(αλ)2t

and

X(x) = A sin(λx) +B cos(λx).

So,

u(t, x) = e−(λα)2t (A sin(λx) +B cos(λx)) .

We let this subject to BCs:

u(t, 0) = e−(λα)2t (A sin(λ× 0) +B cos(λ× 0)) = 0.

So, B = 0. Thus our product solution looks like

u(t, x) = Ae−(λα)2t sin(λx).

The other BC gives

0 = u(t, 1) + hux(t, 1) = Ae−(λα)2t (λ cos(λ) + h sin(λ)) .

So,

tanλ− −λ
h
.
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So, admissible λ’s here are solution to this equation, which is not as simple
as πn, like we have found before. Now, note that λ is this equation cannot be
found explicitly. Solutions are just intersections on the following plot:

We see that

π

2
< λ1 < π < λ2 < 2pi < λ3 < 3π.

We call these λn’s eigenvalues associated with the boundary value problem
X ′′ + λ2X = 0

X(0) = 0

X ′(1) + hX(1) = 0

. (7.1)

The solutions, sin(λnx) are associated eigenfunction. So, with separation of
variables, we obtain

un(x, t) = Ane
−(λnα)2t sin(λnx)

which solve the IBVP. Once again, we have that

u(t, x) =

∞∑
n=1

Ane
−(λnα)2t sin(λnx)

which we want to also satisfy the IC, which is

u(0, x) = u0(x).
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We invoke Fourier’s trick to find A′ns:

ˆ 1

0

u0(x) sin(λmx) dx =

ˆ 1

0

sin(λmx)

∞∑
n=1

Ane
−(λnα)2t sin(λnx) dx

=

∞∑
n=1

An

ˆ 1

0

sin(λmx) sin(λnx) dx

= Am

(
1

2
− sin(2λmx)

4λm

)
.

So
ˆ 1

0

u0(x) sin(λmx) dx = Am
1

2λm
(λm − sin(λmx) cos(λmx))

and so

Am =
2λm

λm − sin(λmx) cos(λmx)

ˆ 1

0

u0(x) sin(λmx) dx.

Summary: Recall the IBVP:
ut = α2uxx

u(t, 0) = 0

ux(t, 1) + hu(t, 1) = 0

u(0, x) = u0(x)

.

In trying to solve it, we have found

u(t, x)

∞∑
n=1

Ane
−(αλ)2t sin(λnx)

to be a solution with

Am =
2λm

λm − sin(λmx) cos(λmx)

ˆ 1

0

u0(x) sin(λmx) dx.

where λn is the nth positive solution to

−λ
n

= tan(λ)

Question: In our finding of An, we swept a detail under the rug. It was or-
thogonality. We assumed the fact that for all n,m

ˆ 1

0

sin(λmx) sin(λnx) dx = 0, if m 6= n.

This would be obvious if λn = nπ. But it is not the case here. We will look at
this in the next section.



Chapter 8

ODE Boundary Value
Problems - a look at the
Sturm-Liouville theory

(reference: Boyce-DiPrima, Chapter 11).

Motivating example:{
ODE : y′′ + λy = 0

BC : y(0) = y(1) = 0, 0 ≤ x ≤ 1.
.

We ask: does solving this BVP require anything about λ? Is it possible to find
non-zero solutions to this problem for arbitrary λ? We can try...

If λ = 0, then y(x) = Ax+B. By subjecting to the BCs, we get A = B = 0.
So, not every λ gives a non-trivial solution. This λ does not admit non-zero
solutions. This is in stark contrast to IVP which can be solved for any non-zero
λ.

If λ < 0, we get the same issue (can check that there are no non-zero solu-
tions for λ < 0.

If λ > 0, then y(x) = C1 sin
(√

λx
)

+ C2 cos
(√

λx
)

. Subject to boundary

conditions, we have C2 = 0 and

C1 = sin
(√

λx
)
.

For non-trivial solutions,
√
λ = nπ.
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Or for n = 1, 2, 3, . . .

λn = n2π2.

The moral: Not every λ works. So we ask: Given a linear ODE and linear
homogeneous BCs, which λ (if any) will work?

Definition 8.0.1. General theory: Consider the ODE

(p(x)y′)′ − q(x)y + λr(x)y = 0,

where we will let p, q, r ∈ C0([0, 1]). Moreover, p(x) ∈ C1([0, 1]). Finally,
p(x), r(x) > 0 for all x ∈ [0, 1]. Also, consider the linear homogeneous BCs:

a1y(0) + b1y
′(0) = 0

a2y(1) + b2y
′(1) = 0.

If, for some fixed λ, the ODE and the BCs have a non-zero solution φ(x),
we say that λ is an eigenvalue for the BVP, and φ(x) is an eigenfunction
corresponding to λ.

An eigenvalue λ corresponding to the BVP is said to be simple if it does not
have two linearly independent eigenfunctions φ1, φ2.

Remark 8.0.1.

1. We will write

L[y] = −(p(x)y′)′ + q(x)y,

which is a second-order linear operator. Then the ODE becomes:

L[y] = λr(x)y.

For this reason, we see the “eigen” terminology arises.

Given our ODE, the theory of ODE gives, for fixed λ, two linearly indepen-
dent solutions of the form y1 = y1(x, λ), y2 = y2(x, λ), and so all solutions to
the ODE is of the form

y(x) = C1y1(x, λ) + C2y2(x, λ).

Question: can we find a condition on λ so that y above is a non-zero solution
satisfying the BCs? Sure we can. Let us subject y to the BCs. We have

0 = a1y(0) + b1y
′(0) =a1(C1y1(0, λ) + C2y2(0, λ)) + b1(C1y

′
1(0, λ) + C2y

′
2(0, λ))

= C1(a1y1(0, λ) + b1y
′
1(0, λ)) + C2(a1y2(0, λ) + b1y

′
2(0, λ)).
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Similarly,

0 = C1(a2y1(1, λ) + b2y
′
1(1, λ)) + C2(a2y2(1, λ) + b2y

′
2(1, λ)).

As a matrix equation,

A

(
C1

C2

)
=

(
0
0

)
=

(
a1y1(0, λ) + b1y

′
1(0, λ) a1y2(0, λ) + b1y

′
2(0, λ)

a2y1(1, λ) + b2y
′
1(1, λ) a2y2(1, λ) + b2y

′
2(1, λ)

)(
C1

C2

)
.

To get non-trivial solution, we require that ker(A) 6= {0}, i.e., det(A) = 0. This
gives a necessary and sufficient condition on λ, since ai, bi and the solutions are
known, that is

det(A) = 0

Recall that
L[y] = −(p(x)y′)′ + q(x)y.

So the ODE is
L[y] = λr(x)y.

Proposition 8.0.1. Lagrange’s Identity: For any u, v ∈ C2([0, 1]), the fol-
lowing identity holds:

ˆ 1

0

(uL[v]− vL[u]) dx = p(x) (u′(x)v(x)− u(x)v′(x))

∣∣∣∣1
0

.

Intuitively, this is essentially an integration by parts formula for the operator
L.

Proof. We have

u(x)L[v](x)− v(x)L[u](x) = u(x)(−(p(x)v′)′ + q(x)v)− v(x)(−(p(x)u′)′ + q(x)u)

= −u(x)(p(x)v′(x))′ + u(x)q(x)v(x)

+ v(x)(p(x)u(x))′ − q(x)v(x)u(x)

= −u(x)(p(x)v′(x))′ + v(x)(p(x)u(x))′.

So the integral becomesˆ 1

0

(uL[v]− vL[u]) dx =

ˆ 1

0

−u(x)(p(x)v′(x))′ + v(x)(p(x)u(x))′ dx

=

ˆ 1

0

−u(x)(p(x)v′(x))′ dx+

ˆ 1

0

v(x)(p(x)u(x))′ dx

= −u(x)(p(x)v′(x))

∣∣∣∣1
0

−
ˆ 1

0

−u′(x)p(x)v′(x) dx

+ v(x)(p(x)u′(x))

∣∣∣∣1
0

−
ˆ 1

0

v′(x)(p(x)u′(x)) dx

= p(x) (v(x)u′(x)− u(x)v′(x))

∣∣∣∣1
0

.
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Corollary: If u, v are eigenfunctions for the BVP then

ˆ 1

0

(uL[v]− vL[u]) dx = 0.

Proof. Recall the boundary conditions:

a1u(0) + b1u
′(0) = 0

a1v(0) + b1v
′(0) = 0

a2u(1) + b2u
′(1) = 0

a2v(1) + b2v
′(1) = 0

Assume that b1, b2 6= 0. For φ = v or u,

φ′(0) =
−a1

b1
φ(0)

φ′(0) =
−a2

b2
φ(1).

So

ˆ 1

0

(uL[v]− vL[u]) dx = p(x) (v(x)u′(x)− u(x)v′(x))

∣∣∣∣1
0

= p(1) (v(1)u′(1)− u(1)v′(1))− p(0) (v(0)u′(0)− u(0)v′(0))

= . . .

= 0.

Theorem: All eigenvalues associated with the Sturm-Liouville prob-
lem are real.

Proof. Let λ = u + iv and φ = U + iV are an eigenvalue-eigenfunction pair
associated with the BVP. Then

L[φ] = λr(x)φ.

Conjugating and noting that p, q, r are real give

L[φ]∗ = (λr(x)φ)∗

= ((−p(x)φ′(x))′ + q(x)φ(x))∗

= (−p(x)φ∗
′
)′ + q(x)φ∗

= L[φ∗].

This gives

L[φ∗] = λ∗r(x)φ∗.
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This says that λ∗ is an eigenvalue too, which takes φ∗ as an eigenfunction. So,
(λ∗, φ∗) and (λ, φ) are two eigenvalue-eigenfunction pairs. By the corollary:

0 =

ˆ 1

0

(φL[φ∗]− φ∗L[φ]) dx

=

ˆ 1

0

(λ∗ − λ)r(x)|φ(x)|2 dx

Since r(x) > 0 for all x, and φ is non-zero,

|φ(x)|2 > 0

for some non-trivial interval in [0, 1]. So

(λ∗ − λ)

ˆ 1

0

r(x)|φ(x)|2 dx > 0.

And so

λ∗ = λ,

i.e., λ ∈ R.

Theorem: ORTHOGONALITY - Sweeping under the carpet: Let
λ1 and λ2 be distinct eigenvalues with eigenfunctions φ1 and φ2. Then

ˆ 1

0

r(x)φ1(x)φ2(x) dx = 0.

Proof. We have, by the corollary, that

0 =

ˆ 1

0

(φ1L[φ2]− φ2L[φ1]) dx

=

ˆ 1

0

r(x)φ1λ2φ2 − φ2λ1r(x)φ1 dx

= (λ2 − λ1)

ˆ 1

0

r(x)φ1φ2 dx.

Since the eigenvalues are distinct, the integral must be zero.

So, if φ1 and φ2 were eigenfunctions corresponding to distinct eigenvalues
λ1, λ2 then φ1 and φ2 are orthogonal in the sense given by the theorem.

But how do we know φ’s exist?

Theorem: Given a Sturm-Liouville problem, there exist eigenvalues and
eigenfunctions. The collection of eigenvalues forms an infinite sequence {λn}
for which λ1 < λ2 < . . . and λn → ∞ as n → ∞, Further, each eigenvalue is
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simple. (Note: this has to do with the spectral theorem).

The final result is another important theorem. But first we define a few
things.

Definition 8.0.2. An eigenfunction for the Sturm-Liouville problem is said to
be normalized if ˆ 1

0

φ2r(x) dx = 1.

Definition 8.0.3. In view of the Sturm-Liouville problem, a function f is ad-
missible with respect to the S-L problem if it is continuous, piecewise differen-
tiable on [0, 1] and

1. If b1 = 0 then f(0) = 0.

2. If b2 = 0 then f(1) = 0.

Theorem: Completeness. Let {φn} be the sequence of normalized eigen-
functions to the S-L problem.

1. If f is admissible with respect to the S-L problem, then f(x) can be
expressed as

∞∑
i=1

aiφi(x) dx

where

ai =

ˆ 1

0

f(x)φi(x)r(x) dx.

and f(x) converges pointwise.

Example 8.0.1. Consider a S-L problem:

u′′ + λu = 0{
u(0) = 0 (a1 = 1, b1 = 0)

u(1) = 0 (a2 = 1, b2 = 0)

We found that

λn = (nπ)2

with the eigenfunctions being {
√

2 sin(nπx)}. The theorem says if f is a con-
tinuous, piecewise differentiable functions on the interval [0, 1]vwith f(0) = 0 =
f(1), then

f(x) =

∞∑
n=1

an

(√
2 sin(nπx)

)
(Fourier series)
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where

an =

ˆ 1

0

f(x)
(√

2 sin(nπx)
)
dx

Observe that for the S-L problem we have the linear operator L : u→ L[u]:

L[u] = −(p(x)u′)′ + q(x)u.

L is a linear operator initially defined on C2([0, 1]) (twice-differentiable functions
on) and L : C2([0, 1]) → C0([0, 1]). So, given boundary conditions for the
problem of the form

a1u(0) + b1u
′(0) = 0

a2u(1) + b2u
′(1) = 0,

any twice differentiable functions u, v which satisfy the boundary conditions
have the following property that

ˆ 1

0

uL[v]− vL[u] dx = 0.

If, say

〈f, g〉 =

ˆ 1

0

f(x)g(x) dx

then

〈u, L[v]〉 = 〈L[u], v〉.

Such an operator L is said to be (formally) self-adjoint.
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Chapter 9

Transforming Hard
Equations into Easier Ones

In this section we will learn how to solve the IBVP of a laterally-heat-losing
rod.

ut = α2uxx − βu{
u(t, 0) = 0 = u(t, 1)

u(0, x) = u0(x)

Ansatz: we will assume (so that the β term goes away)

u(t, x) = e−βtw(t, x).

Can we convert an equation for u into an easier equation for w. Plug in, we get:

−βeβtw(t, x) + e−βtwt(t, x) = α2e−βtw′′(t, x)− βe−βtw(t, x).

This gives a nice equation for w:

wt = α2wxx.

A moment’s thougt shows that all of these steps are reversible. This means that
w solves wt = α2wxx ⇐⇒ u solves ut = α2u− βu.

The boundary and initial conditions are exactly the same. In fact, u satisfies
the BCs and ICs ⇐⇒ w satisfies the same ones:{

w(t, 0) = 0 = w(t, 1)

w(0, x) = u(0, x) = u0(x).

47
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So, we wish to solve the following problem:

wt = α2wxx{
w(t, 0) = 0 = w(t, 1)

w(0, x) = u0(x)
.

The solution is of course

w(t, x) =

∞∑
i=1

ane
−(nπα)2t sin(nπx)

where

an = 2

ˆ 1

0

u0(x) sin(nπx) dx.

So

u(t, x) = e−βxw(t, x)

= e−βt
∞∑
i=1

ane
−(nπα)2t sin(nπx)

=

∞∑
i=1

ane
−[(nπα)2+β]t sin(nπx).

Since β > 0, u(t, x)→ 0 faster than if β = 0.



Chapter 10

Solving Nonhomogeneous
PDEs (Eigenfunction
Expansion)

In all we’ve done, we haven’t yet attack an inhomogeneous heat equation. Let’s
set out to solve the problem

ut = α2uxx + f(t, x){
u(t, 0) = 0

u(t, 1) = 0
u(0, x) = u0(x).

The method we shall follow will also solve the more general problem

ut = α2uxx + f(t, x){
a1u(t, 0) + b1ux(t, 0) = 0

a2u(t, 1) + b2ux(t, 1) = 0
u(0, x) = u0(x).

The question is: Can we write the solution as a series of products:

u(t, x) =

∞∑
n=0

Tn(t)Xn(x)?

Recall that we’ve expanded things via Fourier series (generally to deal with u0)
or general eigenfunction expansions from the Sturm-Liouville theory. So, can
we also expand f(t, x) in this way?

Consider the (easy) inhomogeneous problem.

ut = α2uxx + f(t, x){
u(t, 0) = 0

u(t, 1) = 0
u(0, x) = u0(x).

49
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We will solve with via eigenfunction expansion...

1. Decompose f into pieces so that

f(t, x) =

∞∑
n=1

fn(t)Xn(x)

where Xn’s arise by solving the associated homogeneous problem:

ut = α2uxx{
u(t, 0) = 0

u(t, 1) = 0
u(0, x) = u0(x).

To this end, we write the solution

u(t, x) =

∞∑
n=1

Tn(t)Xn(x)

where Xn’s solve the Strum-Liouville problem:

X ′′ − α2Xxx = 0{
X(0) = 0

X(1) = 0

For this particular problem,

Xn(x) = sin(nπx).

With the assumption that the function X → f(t, x) is admissible in the
Sturm-Liouville sense for all t, the result from S − L theory gives that

f(t, x) =

∞∑
n=1

fn(t)Xn(x),

where

fn(t) = 2

ˆ 1

0

f(t, x) sin(nπx) dx.

2. Subject

u(t, x) =

∞∑
n=1

Tn(t)Xn(x)

to the IBVP, where

f(t, x) =

∞∑
n=1

fn(t)Xn(x),
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and

Xn(x) = sin(nπx),

we get

ut(t, x) =

∞∑
n=1

Ṫn(t) sin(nπx),

and

uxx(t, x) =

∞∑
n=1

−(nπ)2Tn(t) sin(nπx).

Into the IBVP, ut = α2uxx

∞∑
n=1

Ṫn(t) sin(nπx) = α2
∞∑
n=1

−(nπ)2Tn(t) sin(nπx) +

∞∑
n=1

fn(t) sin(nπx),

or equivalently,

∞∑
n=1

[
Ṫn(t) + (αnπ)2Tn(t)

]
sin(nπx) =

∞∑
n=1

fn(t) sin(nπx).

This yields ODEs of the form:

Ṫn(t) + (αnπ)2Tn(t) = fn(t), n = 1, 2, 3, . . .

to which the solution is of the form

Tn(t) = e−(αnπ)2t

ˆ t

0

fn(s)e(αnπ)2s ds+ Tn(0)e−(αnπ)2t.

Note, for

u(0, x) =

ˆ ∞
n=1

Tn(0) sin(nπx) = u0(x),

which means the choice of the Fourier Sine coefficients

Tn(0) = 2

ˆ 1

0

u0(x) sin(nπx) dx, n = 1, 2, 3, . . .

does the trick. Thus, the original IBVP is satisfied (?) with

u(t, x) =

∞∑
n=1

(
e−(αnπ)2t

ˆ t

0

fn(s)e(αnπ)2s ds+ Tn(0)e−(αnπ)2t

)
sin(nπx),
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where

Tn(0) = 2

ˆ 1

0

u0(x) sin(nπx) dx, n = 1, 2, 3, . . .

fn(t) = 2

ˆ 1

0

f(t, x) sin(nπx) dx, n = 1, 2, 3, . . .

We write this as

u(t, x) =

∞∑
n=1

(
e−(αnπ)2t

ˆ t

0

fn(s)e(αnπ)2s ds

)
sin(nπx) +

∞∑
n=1

Tn(0)e−(nπα)2t sin(nπx),

where the first term is the steady-state solution, and the second term is
the transient solution, because in the second term, as t → ∞ it goes to
zero. Let’s check that this works.

(a) Note that u(t, 0) = u(t, 1) = 0.

(b) And

u(0, x) = 0 +

∞∑
n=1

Tn(0)e−(nπα)2t sin(nπx) = u0(x),

which is true by design.

(c) We can also check that it solves the PDE, but we won’t...

Example 10.0.1.


ut = uxx + x− x2

u(t, 0) = u(t, 1) = 0

u(0, x) = u0(x) = sin(πx).
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Solution. Here, f(t, x) = x− x2. So

fn(t) = 2

ˆ 1

0

(x− x2) sin(nπx) dx

= 2

(
(x− x2)

cos(nπx)

−nπ

∣∣∣∣1
0

−
ˆ 1

0

(1− 2x)
cos(nπx)

−nπ
dx

)

= 0 +
2

nπ

ˆ 1

0

(1− 2x) cos(nπx) dx

=
2

nπ

(
(1− 2x)

sin(nπx)

nπ

∣∣∣∣1
0

− 2

nπ

ˆ 1

0

(−2)
sin(nπx)

nπ
dx

)

=
4

(nπ)2

ˆ 1

0

sin(nπx) dx

=
4

(nπ)3
(− cos(nπx))

∣∣∣∣1
0

=
4

(nπ)3
(1− (−1)n).

Also,

Tn(0) =

ˆ 1

0

u0(x) sin(nπx) dx,

but since u0(x) = sin(πx),

Tn(0) = δ1
n.

Now, ˆ t

0

fn(s)e(nπ)2s ds =

ˆ t

0

4

(nπ)3
(1− (−1))ne(nπ)2s ds

=
4

(nπ)5
(1− (−1)n)

(
e(nπ)2t − 1

)
.

All together...

u(t, x) =

∞∑
n=1

(
e−(nπ)2t

(
4

(nπ)5
(1− (−1)n)

(
e(nπ)2t − 1

)))
sin(nπx) + e−(π)2t sin(πx).

Physically, what does this solution say? First, we have a diffusion term. But
not only that, we have ut ∼ x− x2, i.e., we’re adding heat to the middle of the
rod and allowing this heat to diffuse. We can also approximate the solution to
get

u(t, x) =

∞∑
n=1

(
e−(nπ)2t

(
4

(nπ)5
(1− (−1)n)

(
e(nπ)2t − 1

)))
sin(nπx) + e−(π)2t sin(πx)

≈ 8

π5
sin(πx) +

(
1− 8

π5

)
e−π

2t sin(πx).
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So this makes sense, because the temperature distribution is sin(πx) scaled down
by some number.



Chapter 11

Integral Transformation

An integral transformation/operator is a map taking a function f to another
function F = I[f ] by the rule:

I[f ](s) =

ˆ B

A

K(s, t)f(t) dt

where K(s, t) is called an integral kernel.

Proposition 11.0.1. Integral operators are linear (when taken to be defined
on some appropriate vector space of functions).

Proof. -ish

Let f, g be given. Then

I[αf + βg](s) =

ˆ B

A

K(s, t) (αf(t) + βg(t)) dt

= α

ˆ B

A

K(s, t)f(t) dt+ β

ˆ B

A

K(s, t)g(t) dt

= αI[f ](s) + βI[g](s).

Note: The study of integral transformations is a main focus of functional
analysis.

Note: We can think of this as moving between spaces: momentum and po-
sition.

55
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In many cases, an integral transformation I will have an inverse, denoted
I−1, so that, in particular, if F (s) = I[f ](s) then f(t) = I−1[F ](t), i.e.,

I−1 ◦ I = Identity.

For us, presently, we will work with integral transformations to take difficult
PDEs and transform them into simple PDEs which are easier to solve . Taking
the solution to the easier PDE and applying the inverse transformation will
yield the solution to the harder PDE.

Idea: Hard PDE → Easier PDE → Solution to easy PDE → Solution to
hard PDE.

Note: there’s some resemblance between this and “change of basis.”

11.1 Some common transformations

11.1.1 The Fourier Transform

Works with f : R→ C.

F [t](ξ) = f̂(ξ) =
1√
2π

ˆ ∞
−∞

e−ixξf(x) dx = F (ξ).

The inverse looks almost exactly the same:

F−1[F ](x) =
1√
2π

ˆ ∞
−∞

eixξF (ξ) dξ = f(x).

This yields (in the vector space L2(R))

F−1 ◦ F = Identity.

Disadvantage: complex-valued things

Advantage: almost always works, and takes differentiation to polynomial
multiplication.

Note: F is a unitary operator.

11.1.2 The Fourier Sine Transform

Fs[f ](w) =
2

π

ˆ ∞
0

sin(wt)f(t) dt.

The inverse is

F−1
s [F ](t) =

ˆ ∞
0

sin(wt)F (w) dw.
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11.1.3 The Fourier Cosine Transform

Fc[f ](w) =
2

π

ˆ ∞
0

cos(wt)f(t) dt.

The inverse is

F−1
c [F ](t) =

ˆ ∞
0

cos(wt)F (w) dw.

11.1.4 The Discrete/Finite Fourier Transform (Fourier Se-
ries)

Given a function f : [0, L]→ R or C, the finite Fourier transform

F [f ](n) = f̂(n) = an =
1

L

ˆ L

0

f(x)e−2πinx/L dx.

The inverse is

F−1(n) = F−1[f̂(n)] =

∞∑
n=−∞

ane
2πinx/L.

Property:

f(x) =

∞∑
n=−∞

f̂(n)einx = F−1 ◦ F [f ].

11.1.5 The Analogous Sine Transform

Fs[f ](n) = an =
2

L

ˆ L

0

f(x) sin
(πnx
L

)
dx.

The inverse is

F−1
s [an](x) =

∞∑
n=1

an sin
(nπx
L

)
.

Disadvantage: Half-range expansions...

11.1.6 The Laplace Transform

Note: the Laplace transform is analogous to the Moment Generating Function
in Probability theory.

L[f ](s) =

ˆ ∞
0

e−stf(t) dt.
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The (difficult) inverse is

L−1[F ](t) =
1

2πi

ˆ C+i∞

C−i∞
F (s)est ds,

which is a complex contour integral.

11.2 The Fourier Series

We had:

Fs[f ](ω) =
2

π

ˆ 1

0

f(x) sin(ωx) dx

Fc[f ](ω) =
2

π

ˆ 1

0

f(x) cos(ωx) dx

F [f ](ξ) =
1√
2π

ˆ ∞
−∞

f(x)e−ixξ dx.

Proposition 11.2.1. Some identities:

1. Fs[f ′] = −ωFc[f ]

2. Fs[f ′′] = 2
πωf(0)− ω2Fs[f ]

3. Fc[f ′] = −2
π f(0) + ωFs[f ]

4. Fc[f ′′] = −2
π f
′(0)− ω2Fc[f ].

5. F [f ′](ξ) = iξF [f ]

6. F [f ′′](ξ) = −ξ2F [f ](ξ)

Remark 11.2.1. In our alternative notation, this says

f̂ ′(ξ) = iξf̂(ξ).

We notice that the ˆ map converts differentiation to polynomial multiplication.

Proof of propositions 5,6. 1. Proof of 5.: The supposition that f, f ′ have ex-
istent Fourier Transforms, i.e.,

ˆ ∞
−∞

f(x)e−ixξ dx,

ˆ ∞
−∞

f ′(x)e−ixξ dx
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exist for all ξ, requires in particular, that

lim
t→±∞

f(x) = lim
t→±∞

f ′(x) = 0.

So, interpreting these as improper Riemann integrals:

F [f ′](ξ) =
1√
2π

ˆ ∞
−∞

f ′(x)e−ixξ dx

=
1√
2π

lim
t→∞

ˆ t

−t
f ′(x)e−ixξ dx

=
1√
2π

lim
t→∞

(
f(x)e−ixξ

∣∣∣∣t
−t
−
ˆ t

−t
f(x)(−iξ)e−ixξ dx

)

=
1√
2π

lim
t→∞

(
f(t)e0itξ − f(−t)eitξ − iξ

ˆ t

−t
f(x)e−ixξ dx

)
= iξF [f ](ξ).

2. Proof of 6.:

F [f ′](ξ) = iξF [f ′](s)

= (iξ)2F [f ](ξ)

= −ξ2F [f ](ξ).

There’s a full version of the Fourier transform that we won’t discuss here.

Rather, let us use the Fs transform to solve half-infinite rod heat equation:
ut = α2uxx, 0 < x <∞, t > 0

u(t, 0) = A, t > 0

u(0, x) = 0, x ≥ 0.

We start with ut = α2uxx. Let’s compute the Fourier Sine transform in the
variable x (this is sometimes called the Partial Fourier Transform):

F [ut(t, x)](ω) =
2

π

ˆ ∞
0

ut(t, x) sin(ωx) dx

=
2

π

∂

∂t

(ˆ ∞
0

u(t, x) sin(ωx) dx

)
=

∂

∂t
Fs[u(t, x)](ω).

We shall call

U(t, ω) = Fs[u(t, x)](ω).
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So,

Fs[ut(t, x)](ω) =
∂U

∂t
.

On the other hand,

Fs[uxx](ω) =
2

π

ˆ ∞
0

uxx sin(ωx) dx

=
2

π
ωu(t, 0)− ω2Fs[u(t, x)](ω).

But u(t, 0) = A by the boundary condition, so

Fs[uxx](ω) =
2A

π
ω − U(t, ω).

Subject to ut = α2uxx, we claim:

∂U

∂t
= α2

(
2Aω

π
− ω2U(t, ω)

)
,

or equivalently,

∂U

∂t
+ α2ω2U =

2Aω2α2

π
,

which is nothing but a linear ODE. Now, can we get an initial condition for this
ODE? Yes! Since u(0, x) = 0 for all x,

U(0, ω) = Fs[u(0, x)](ω) = Fs[0](ω) = 0.

Thus, we have transformed an initial condition for our PDE in u into an initial
condition in U . We get an IVP:{

∂U
∂t + α2ω2U = 2Aω2α2

π

U(0, ω) = 0,

whose solution is

U(t, ω) = e−ω
2α2t

ˆ t

0

2A

π
ω2α2eω

2α2s ds.

So,

U(t, ω) =
2A

π

(
1− e−ω

2α2t
)
.

So, then

u(t, x) = F−1
s [U(t, ω)] = F−1

s

[
2A

π

(
1− e−ω

2α2t
)]

(x)

= A× erfc

(
x

2α
√
t

)
,

where

erfc(y) =
2√
π

ˆ ∞
y

e−t
2

dt.
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11.3 From the Fourier Series to the Fourier Trans-
form

First, let us find the connection between cosine-sine version of Fourier Series
and

∑
()einx. Here is a fact: if f is a periodic of period 2L and “nice,” then

f(x) =
a0

2
+

∞∑
n=1

an cos
(nπx
L

)
+

∞∑
n=1

bn sin
(nπx
L

)
where

an =
1

L

ˆ L

−L
f(x) cos

(nπx
L

)
dx

and

bn =
1

L

ˆ L

−L
f(x) sin

(nπx
L

)
dx

for n = 0, 1, 2, . . . . We note that “nice” is just piecewise differentiable, or
weaker, f ∈ L2([0, L]).

We want to connect this with the complex representation of Fourier Series:

f(x) =
∑
n∈Z

Cne
inxπ/L,

where

Cn =
1

2L

ˆ L

−L
f(x)e−inπx/L dx.

Recall the Euler’s identity:

eiθ = cos θ + i sin θ

e−θ = cos θ − i sin θ.

So,

Cn =
1

2L

ˆ L

−L
f(x) cos

nπx

L
dx− i 1

2L

ˆ L

−L
f(x) sin

nπx

L
dx

=
an − ibn

2
, n = 0, 1, 2, 3, . . .

For n = −m, m = 0, 1, 2, 3, . . . then

C−m = Cn =
1

2L

ˆ L

−L
f(x)eimπx/L dx

=
1

2L

ˆ L

−L
f(x) cos

mπx

L
dx+ i

1

2L

ˆ L

−L
f(x) sin

mπx

L
dx

=
am + ibm

2
.
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In other words, for all n = 0, 1, 2, . . .

2Cn = an − ibn
2C−n = an + ibn,

then

an = Cn + C−n

and

bn =
C−n − Cn

i
= i(Cn − C−n).

Plugging these coefficients into the Fourier Series, we get

f(x) = C0 +

∞∑
n=1

(Cn + C−n) cos
nπx

L
+

∞∑
n=0

i(Cn − C−n) sin
nπx

L

= C0 +

∞∑
n=1

Cn

(
cos

nπx

L
+ i sin

nπx

L

)
+

∞∑
n=1

C−n

(
cos

nπx

L
− i sin

nπx

L

)
= C0 +

∞∑
n=1

Cne
inπx/L + C−ne

−inπx/L

=
∑
n∈Z

Cne
inπx/L,

which is exactly the complex representation of the Fourier Series.

So, given a 2L-periodic nice function f , we can write

f(x) =
∑
n∈Z

Cne
inπx/L

=
∑
n∈Z

(
1

2L

ˆ L

−L
f(x′)e−inπx

′/L dx′

)
einπx/L

=
∑
n∈Z

(
1

2π

ˆ L

−L
f(x′)e−inπx

′/L dx′

)
einπx/L

π

L

≈
∑

gL

(nπx
L

) π
L
.

What if we want to represent a function that is not 2L-periodic. Suppose I have
a Gaussian function (which is clearly not 2L-periodic). What we do now is just
have the Gaussian from −L to L, and make f periodic in L (copy this part
and paste everywhere). The idea is this: the Fourier Series will converge to the
2L-periodization of f .
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Notice that this, in particular, approximates the Gaussian function in the
window [−L,L]. By taking L→∞, we can use this idea to capture all of f .

Now, consider the last expression above, we see that it is some sort of Rie-
mann sum. As L→∞,∑

gL

(nπx
L

) π
L
→
ˆ ∞
−∞

g(ξ) dξ,

where

gL(ξ) = eiξx
1

2π

ˆ L

−L
f( )e−i( ) dx′ → eiξx

1

2π

ˆ ∞
−∞

f(x′)e−ix
′ξ dx′.

So,

f(x) =

ˆ ∞
−∞

g(ξ)eiξx dξ

=
1√
2π

ˆ ∞
−∞

(
1√
2π

ˆ ∞
−∞

f(x′)e−iξx
′
dx′
)
eiξx dξ

=
1√
2π

ˆ ∞
−∞

f̂(ξ)eiξx dξ

= F−1[f̂ ](x).

We had, for a “nice” function f : R→ R or C,

F [f ](ξ) = f̂(ξ) =
1√
2π

ˆ ∞
−∞

f(x)eixξ dx,

for any ξ ∈ R. This is the Fourier Transform of f . It has an inverse

F−1[F ](x) =
1√
2π

ˆ ∞
−∞

F (ξ)eixξ dξ

with F−1 ◦ F = Id.

Example 11.3.1. Let f(x) = 1[−1,1]. Then

F [f ](ξ) =
1√
2π

e−iξ − eiξ

−iξ
=

2

π

sin(ξ)

ξ
.

We see that the Fourier Transform takes something localized and spread it.
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Example 11.3.2. Let

f(x) =

{
e−x, x ≥ 0

ex, x < 0.

Then

f̂(ξ) =
1√
2π

(ˆ ∞
0

e−(x+iξ) dx+

ˆ ∞
0

e−x+iξx dx

)
=

1√
2π

(ˆ ∞
0

e−x(1+iξ) − e−x(1−iξ) dx

)
=
−1√
2π

(
− 1

1 + iξ
+

1

1− iξ

)
=

1

2π

−2iξ

1 + ξ2

= −i
√

2

π

ξ

1 + ξ2
.
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Example 11.3.3. Consider the Gaussian function

f(x) = e−x
2

then we can show

f̂(ξ) =
1√
2
e−(ξ/2)2 .

We say that the Gaussian function is in some sense the “eigenfunction” of the
Fourier Transform.

Proposition 11.3.1.

√
π =

ˆ ∞
−∞

e−x
2

dx.

Proof.

Definition 11.3.1.

I =

ˆ ∞
−∞

e−x
2

dx =

ˆ ∞
−∞

e−y
2

dy
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So

I2 =

(ˆ ∞
−∞

e−x
2

dx

)(ˆ ∞
−∞

e−y
2

dy

)
.

So,

I2 =

¨
R
e−(x2+y2) dxdy

We change into polar coordinate

0 ≤ r ≤ ∞
0 ≤ θ ≤ 2π.

So

I2 =

ˆ ∞
0

ˆ 2π

0

e−r
2

r dθdr = −π
ˆ ∞
−∞

2re−r
2

dr = −π.

We have seen that

1. F is a linear map.

2. F [f ′](ξ) = iξF [f ](ξ)

3. F [f ′′](ξ) = −ξ2F [f ](ξ).

But f̂g 6= f̂ ĝ. Though this pointwise product isn’t preserved under the
Fourier Transform, another product is the Convolution Product:

Definition 11.3.2. Given “nice” g, f : R → R. The convolution of f and g,
denoted by f ∗ g : R→ R defined by

(f ∗ g)(x) =
1√
2π

ˆ ∞
−∞

f(y)g(x− y) dy.

Proposition 11.3.2.

f ∗ g = g ∗ f.

Example 11.3.4.

f(x) = x g(x) = e−x
2

.

Then

(f ∗ g)(x) =
1√
2π

ˆ ∞
−∞

e−y
2

(x− y) dy

=
x√
2π

√
π

=
x√
2
.
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Theorem 11.3.1. For f, g “nice” enough,

F [f ∗ g](ξ) = f̂(ξ)ĝ(ξ)

Proof.

F [f ∗ g] =
1√
2π

ˆ ∞
−∞

(f ∗ g)(x)e−ixξ dx

=
1√
2π

ˆ ∞
−∞

(
1√
2π

ˆ ∞
−∞

f(y)g(x− y) dy

)
e−ixξ dx

=
1

2π

ˆ ∞
−∞

ˆ ∞
−∞

f(y)g(x− y)e−i(x−y)ξe−iyξ dydx

=
1

2π

ˆ ∞
−∞

f(y)e−iyξ
ˆ ∞
−∞

g(x− y)e−i(x−y)ξ dxdy,

where the last line comes from Fubini’s theorem. Change of variables: u = x−y:

F [f ∗ g] = ĝ(ξ)f̂(ξ).
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Chapter 12

Application of the Fourier
Transform:

Consider the PDE:

ut = α2uxx, t > 0, x ∈ R
u0(x) = u0(x), x ∈ R.

There is an implicit assumption that u(t, x) is integrable on (−∞,∞) for each
t. In particular, the tails of u(t, x) are small so that we can apply the Fourier
Transform.

Let’s apply the FT to the PDE, in the x-variable. Sometimes this is called
the partial FT in the literature. So, writing U(t, ξ) = F [u(t, x)](ξ), we have
that

F [ut](ξ) = Fx[ut](ξ) =
1√
2π

ˆ
R
ut(t, x)e−ixξ dx

=
∂

∂t

1√
2π

ˆ
R
u(t, x)e−ixξ dx

=
∂

∂t
F [u](ξ)

=
∂

∂t
U(t, ξ).

Also, we have

F [α2uxx(t.x)](ξ) = α2F [uxx(t, x)](ξ)

= α2(−ξ2)F [u(t, x)](ξ), from last week...

= −α2ξ2U(t, ξ).

69
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So, together we have

F [ut](ξ) = F [α2uxx(t.x)](ξ) =⇒ ∂

∂t
U(t, ξ) = −α2ξ2U(t, ξ)

when U(t, ξ) = F [u(t, x)](ξ). Notice that this is an ODE in the variable t for
each fixed ξ. We can ask, what about initial conditions? Note the following:

U(0, ξ) = F [u(0, x)](ξ) = F [u0(x)](ξ) = û0(ξ).

So, we have converted the initial IBVP into an IVP for each fixed ξ given above.
That means we wish to solve the following IVP:{

∂
∂tU(t, ξ) = −α2ξ2U(t, ξ)

U(0, ξ) = û0(ξ).
(12.1)

The solution to this IVP, for each ξ is

U(t, ξ) = û0(ξ)e−α
2ξ2t.

So now we take the inverse:

u(t, x) = F−1[U(t, ξ)](x) = F−1
[
û0(ξ)e−α

2ξ2t
]

(x).

By our convolution/multiplication property, it is necessary that

u(t, x) =
(
F−1[û0]

)
∗
(
F−1

[
e−α

2ξ2t
])

(x).

But of course,

F−1[û0](x) = u0(x).

Second,

F−1
[
e−α

2ξ2t
]

(x) =
1√
2π

ˆ
R
e−α

2ξ2teiξx dξ.

Change of variables: letting ξ → −α
√
t ξ = s. So, ds = −α

√
t dξ. So,

F−1
[
e−α

2ξ2t
]

(x) =
1√
2π

1

α
√
t

ˆ
R
e−s

2

e−ix(s/α
√
t) ds, we’ve added (-) & flipped bounds

=
1

α
√
t

[
1√
2π

ˆ
R
e−s

2

ei(x/α
√
t)s ds

]
=

1

α
√
t

[
F [e−s

2

]

(
x

α
√
t

)]
=

1

α
√
t

1√
2
e−(x/α

√
t)2/22

=
1

α
√

2t
e−x

2/4α2t

= Ht(x).
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This is called the heat kernel.

So,

u(t, x) = (u0 ∗Ht)(x)

=
1√
2π

ˆ
R
u0(y)Ht(x− y) dy

=
1√
2π

ˆ
R
u0(y)

1

α
√

2t
e−(x−y)2/4α2t dy

=
1

2α
√
πt

ˆ ∞
−∞

u0(y)e−(x−y)2/4α2t dy.

For small t, and α = 1

u(t, x) =
1

2
√
πt

ˆ
R
u0(y)e−(x−y)2/4t dy,

which concentrates the integral around x = y, so that

u(t, x) ≈
ˆ
u0(y)δ(x− y) dy = u0(x).

Precisely,

lim
t→0

u(t, x) = u0(x).

For large time, u(t, x) ≈ 0. Precisely, heat diffuses to zero:

lim
t→∞

u(t, x) = 0.

Just a recap of what we’ve done so far: We have studied the heat equation
on the full real line R:

ut = α2uxx, , t > 0, x ∈ R
u(0, x) = u0.

We’ve found with the help of the FT,

u(t, x) = (Ht ∗ u0)(x) =
1√
2π

ˆ
R
Ht(x− y)u0(y) dy

where

Ht(x) =
1√
2t
e−x

2/4α2t

is called the heat kernel, which has many important prperties useful in analysis,
geometry, mathematical physics, etc. Recall that we used to have an infinite
series, now we have an integral - which we can think of as a limit of this infinite
series.
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Chapter 13

Laplace Transform and
Application

Now we move on to the Laplace transform and then a nice PDE which is well-
adapted to it. Recall, for a function f : [0,∞)→ R,

L[f ](s) =

ˆ ∞
0

e−stf(t) dt,

which is easy to compute. This map is invertible on a certain class of functions
(vector space). So, in particular, it is one-to-one, and so L[f ] = L[g] =⇒ f = g.
This is a basis for using tables of Laplace transforms.

It also have an explicit formula for the inverse

L−1[F (s)](t) =
1

2πi

ˆ C+i∞

C−i∞
estF (s) ds,

which is in fact a complex line integral, which is often somewhat difficult to
compute.

One upside to L is that it can handle functions f which do not have limt→∞ f(t) =
0, which is a requirement for the FT. The class of functions L can handle is called
exponentially bounded. More precisely, if given an f : [0,∞)→ R, s.t

|f(t)| ≤Meat

for any t,M > 0, a ∈ R, then L[f ](s) makes sense for all s > a.

Example 13.0.1. Let f(t) = 1. Then

L[1](s) =

ˆ t

0

e−st dt = −−e
st

s

∣∣∣∣t=∞
t=0

=
1

s
,

defined for s > 0.
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Example 13.0.2. Let f(t) = t. Then

L[f ](s) =

ˆ ∞
0

te−st dt = − te
−st

s

∣∣∣∣∞
0

−
ˆ ∞

0

−e
−st

s
dt =

1

s

1

s
=

1

s2
.

Using integration by parts, it is easy to see that

L[sin(ωt)](s) =
1

ω2 + s2
.

Proposition 13.0.1. Given u(t, x), set

U(s, x) = Lt[u(t, x)](s),

then the following are true

1. L[ut(t, x)](s) = sU(s, x)− u(0, x).

Proof.

L[ut](s) =

ˆ ∞
0

ute
−st dt

= u(t, x)e−st
∣∣∣∣∞
0

−
ˆ ∞

0

u(t, x)se−st dt

= sU(s, x)− u(0, x).

2. L[uxx(t, x)](s) = ∂2

∂x2U(s, x).

The proof is left as an exercise.

Definition 13.0.1. For exponentially bounded functions f, g, we define

(f ∗ g)(t) =

ˆ t

0

f(t− τ)g(τ) dτ =

ˆ t

0

f(τ)g(t− τ) dτ.

to be the convolution .

Proposition 13.0.2.

L[f ∗ g] = L[f ]L[g].

The proof is in Marlow’s.
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Example 13.0.3.

L−1

[
1

s
· 1

s2 + 1

]
(t) = L[1]L[sin(t)] = (1 ∗ sin)(t).

We can compute

(1 ∗ sin)(t) =

ˆ t

0

1 · sin(τ) dτ = − cos(τ)

∣∣∣∣t
0

= 1− cos(t).

We can use the LT to solve a heat conduction problem. Consider
ut = uxx, x > 0, t > 0

ux(t, 0)− u(t, 0) = 0 t > 0

u(0, x) = u0, x ≥ 0.

We will write

u(s, x) = Lt[u(t, x)](s),

and solve the problem.

Lt[ut](s) = sL[u]− u(0, x) = sU(s, x)− u0.

We also know that

Lt[uxx] =
∂2

∂x2
U(s, x).

So we have

∂2

∂x2
U(s, x) = sU(s, x)− u0.

In other words,

∂2

∂x2
U(s, x)− sU(s, x) = −u0.

To solve, we seek a particular solution.

Up(s, x) = Ax+B.

So,

∂2

∂x2
Up(s, x)− sUp(s, x) = 0− s(Ax+B) = −u0,

which has to hold for all x > 0. So we conclude A = 0 and so B = u0/s. So,

Up(s, x) =
u0

s
.
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And given that the homogeneous solution is

Uh(s, x) = C1e
x
√
s + C2e

−x
√
s.

So the general solution is

U(s, x) = C1e
x
√
s + C2e

−x
√
s +

u0

s
.

As we physically cannot expect that u(t, x) → ±∞ as x → ∞, we set C1 = 0.
So the solution is

U(s, x) = Ce−x
√
s +

u0

s
.

Now we appeal to the BCs, to which we apply the Laplace transform:

U(s, 0) = Lt[u(t, 0)](s) = L[ux(t, 0)](s) =
∂

∂x
U(s, 0).

So, in view of the general solution,

C +
u0

s
= −
√
sCe−0·

√
s,

so,

C +
√
sC = −u0

s
,

or

C = −u0

s

1

1 +
√
s
.

All together,

U(s, x) = −u0

s

1

1 +
√
s
e−x
√
s +

u0

s
= −u0

(
1

s+ s3/2
e−x
√
s − 1

s

)
.

We look at the table of Laplace inverses and find

u(t, x) = u0 − u0

(
erfc

(
x

2
√
t

)
− erfc

(√
t+

x

2
√
t
ex+t

))
with

erfc(x) =
2√
π

ˆ ∞
x

e−ξ
2

dξ.



Chapter 14

Duhamel’s Principle

Idea: The convolution allows you to push forward information concerning time-
dependent boundary conditions.

Hard problem:

ut = uxx, 0 < x < 1, t > 0u(t, 0) = 0

u(t, 1) = f(t), t > 0

u(0, x) = 0, x ∈ [0, 1].

Easy problem:

wt = wxx, 0 < x < 1, t > 0w(t, 0) = 0

w(t, 1) = 1, t > 0

w(0, x) = 0, x ∈ [0, 1].

We can use the Laplace transform (half-line problem) to solve the Easy
problem.

W (s, x)− L[w(t, x)](s).

Plugging in gives

sW (s, x)−W (0, x) =
∂2W

∂x2
(s, x).

By the IC:

∂2W

∂x2
(s, x)− sW (s, x) = 0.

Here,

W (s, x) = C1e
x
√
s + C2e

−x
√
s.
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We can apply the BCs to get

W (s, 0) = L[w(t, 0)](s) = L[0] = 0

and

W (s, 1) = L[w(t, 1)](s) = L[1](s) =
1

s
.

So,

W (s, 0) = C1 + C2 = 0.

So, C1 = C = −C2. Thus,

W (s, x) = Cex
√
s − Ce−x

√
s.

And of course,

W (s, 1) =
1

s
= C

(
ex
√
s − e−x

√
s
)
.

Thus,

C =
1

s
(
e
√
s − e−

√
s
) .

All together,

W (s, x) =
1

s

(
ex
√
s − e−x

√
s

e
√
s − ex

√
s

)
=

1

s

sinh(x
√
s)

sinh(
√
s)
.

By tables,

w(t, x) = L−1[W (s, x)](t) = x+
2

π

∞∑
n=1

(−1)n

n
e−(nπ)2t sin(nπx).

We mirror this with the hard problem:

U(s, x) = L[u(t, x)](s)

and

F (s) = L[f(t)](s).

By exactly the same approach, we obtain

U(s, x) = F (s)
sinh(x

√
s)

sinh(
√
s)

= F (s)s
1

s

sinh(x
√
s)

sinh(
√
s)

= F (s) · sW (s, x) = F (s) · L[wt(t, x)](s).
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So,

U(s, x) = F (s) · L[wt(t, x)](s) = L[f(t)](s) · L[wt(t, x)](s).

So, by the convolution property,

u(t, x) = f ∗ wt =

ˆ t

0

f(t− τ)wt(τ, x) dτ.

We can integrate by parts, which gives us

u(t, x) = f(0)w(x, t) +

ˆ t

0

f ′(t− τ)w(τ, x) dτ,

where w(τ, x) is given exactly by the solution to the easy problem.
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Chapter 15

Elliptic problems - Laplace
- Poisson - Helmholtz

Fundamental object: The Laplacian is defined in Cartesian coordinates as

∆u = ∇2u = uxx + uyy

In polar coordinates: r =
√
x2 + y2, θ = tan−1(y/x)

∆u = ∇2u = urr +
1

r
ur +

1

r2
uθθ

Why are the two description equivalent? Just the chain rule! If

u(x, y) = U(r, θ) = U(r(x, y), θ(x, y)),

then we have

uxx =
∂2u

∂x2
=

∂2

∂x2
U(r(x, y), θ(x, y))

=
∂

∂x

(
∂U

∂r

∂r

∂x
+
∂U

∂θ

∂θ

∂x

)
=

∂

∂x

∂U

∂r

∂r

∂x
+
∂U

∂r

∂2r

∂x2
+

∂

∂x

∂U

∂θ

∂θ

∂x
+
∂U

∂θ

∂2θ

∂x2

=
∂2U

∂r2

(
∂r

∂x

)2

+
∂2U

∂r∂θ

∂θ

∂x

∂r

∂x
+
∂U

∂r

∂2r

∂x2

+
∂2U

∂r2

(
∂θ

∂x

)2
∂2U

∂θ∂r

∂θ

∂x

∂r

∂x
+
∂U

∂θ

∂2θ

∂x2

= Urr

(
∂r

∂x

)2

+ 2Urθ
∂r

∂x

∂θ

∂x
+ Ur

∂2r

∂x2
+ Uθθ

(
∂θ

∂x

)2

+ Uθ
∂2θ

∂x2
.
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Now, add this to uyy. So,

∇2u = Urr

((
∂r

∂x

)2

+

(
∂r

∂y

)2
)

+ 2Urθ

(
∂r

∂x

∂θ

∂x
+
∂r

∂y

∂θ

∂y

)

+Ur

(
∂2r

∂x2
+
∂2r

∂y2

)
+ Uθθ

((
∂θ

∂x

)2

+

(
∂θ

∂y

)2
)
.

Calculating the partials, we should get

∂r

∂x
=

x√
x2 + y2

∂r

∂y
=

y√
x2 + y2

∂2r

∂x2
=

y2

(x2 + y2)3/2

∂2r

∂y2
=

x2

(x2 + y2)3/2

∂θ

∂x
=

−y
x2 + y2

∂θ

∂y
=

x

x2 + y2

∂2θ

∂x2
=

2xy√
(x2 + y2)2

∂2θ

∂y2
=

−2xy√
(x2 + y2)2

so that

∇2u = Urr +
1

r
Ur +

1

r2
Uθθ

as claimed.

Often, our problem will be posed on a circle/disk, and so solving ∇2u = 0
is easiest in polar coordinates.

Summary, in 2D

∇2u = uxx + uyy = Urr +
1

r
Ur +

1

r2
Uθθ

In 3D, in Cylindrical coordinates

∇2u = uxx + uyy + uzz = Urr +
1

r
Ur +

1

r2
Uθθ + Uzz
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In Spherical coordinates:

∇2u = Urr +
2

r
Ur +

1

r2
Uθθ +

cot θ

r2
Uθ +

1

r2 sin2 θ
Uθθ

Why is the Laplacian important? By studying second-order difference quotients,
we’ll find that

• If at a point (x, y) ∈ R2, ∇2u(x, y) > 0, then u(x, y) is less than the
average of u among its neighboring points.

• If at a point (x, y) ∈ R2, ∇2u(x, y) < 0, then u(x, y) is greater than the
average of u among its neighboring points.

• If at a point (x, y) ∈ R2, ∇2u(x, y) = 0, then u(x, y) is equal to the
average of u among its neighboring points.

What does this mean? Let’s say the average of u is

ū =
1

circumference

ˆ
circle

u(x, y) ds.

Then if ∇2u = 0, then u(x, y) = ū. How does this translate physically?

1. For the heat equation:

ut = α2∇2u.

Let’s suppose that ∇2u > 0 at (x, y). Then the temperature of (x, y)’s
neighbors is higher, no average. So, ut > 0, i.e., the temperature at (x, y)
increases in time. This is what we expect. The neighbors heat (x, y) up.

2. ∇2u as a “relaxation measure.”

We will be primarily focused on three problems:

1. Laplace’s equations:

∇2u = 0

In the view of the relaxing measure interpretation, this says we seek a
function u which at all points (x, y), u(x, y) is equal to the average of u
among all its neighboring points, i.e., u is “lazy.”

We will pose Laplace’s equation along with various boundary conditions
to form boundary value problems.

Laplace’s equations arise in a number of contexts:

• Steady-state solution to the heat equation.
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• Electrostatics: If there is no charge in a region Ω, then the electric
potential will satisfy Laplace’s equation on Ω.

• In Newtonian gravity: If there is no mass in a region Ω, then the
gravitational potential will satisfy Laplace’s equation on Ω.

2. Poisson’s equations:

∇2u = f

This says that u will be related to the average value among its neighbors
based on f (the sign of f).

Contexts:

• Steady state to ut = ∇2u− f(x, y).

• Electrostatics: ∇2u = −ρ, which describes the electric potential in a
region with charge density ρ.

• Similarly with Newtonian gravity.

• Helmholtz equations: (Eigen-equation)

∇2u+ λu = 0

This arises in understanding the “modes” of the vibration of a drum(head).

15.1 Boundary Value Problems for Laplace’s Equa-
tion

A boundary value problem for Laplace’s equation in a region Ω with boundary
∂Ω asks for a function u satisfying

1. ∇2u = 0 inside Ω, or for all (x, y) ∈ Ω

2. some knowledge of u along ∂Ω. This is called a boundary condition.

Example 15.1.1. Steady-state solutions to IBVPs for the heat equation. Con-
sider 

ut = uxx + sin(πx), t > 0, 0 < x < 1

u(t, 0) = u(t, 1) = 0, ∀t > 0

u(0, x) = sin(3πx), x ∈ [0, 1]

Provided it exists, the steady state solution is a solution for which ut = 0. This
is in general a function u = u(x). Assuming that ut = 0, we have that

uxx = − sin(πx)

u(0) = u(1) = 0.
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With the interpretation that ut = 0 is gotten by t → ∞, the IC shouldn’t
matter. Trivially, we see that

u(x) =
1

π2
sin(πx).

So this works. A note: a steady state solutions doesn’t always exist. It
is possible that ut doesn’t go to 0 as t→∞.

We study 3 principal types of boundary conditions (BC) for Laplace’s equa-
tion. These are

1. Dirichlet Conditions

• Simplest of all: specifies value of u(x, y) along ∂Ω

Example 15.1.2. Ω = unit disk. ∂Ω = unit circle:{
∇2u = urr + 1

rur + 1
r2uθθ = 0, Ω = {0 < r < 1, θ ∈ [0, 2π]}

u(1, θ) = f(θ), ∀θ ∈ [0, 2π]

This is also called the interior Dirichlet problem

Example 15.1.3. Ω = outside of umit disk. δΩ = unit circle.{
∇2u = 0, r > 1, θ ∈ [0, 2π]

u(1, θ) = f(θ), θ ∈ [0, 2π]

This is also called the exterior Dirichlet problem

Example 15.1.4. Annulus:
∇2u = 0, 1 < r < 2, θ ∈ [0, 2π]

u(1, θ) = f1(θ), θ ∈ [0, 2π]

u(2, θ) = f2(θ), θ ∈ [0, 2π]

This is also called the mixed Dirichlet problem

Remark 15.1.1.

• Note that we ask f(θ) be periodic.

• We will be able to solve this analytically.

• If Ω is a bounded (it’s more general, this in particular) region and
∂Ω is sufficiently nice, then the problem is well-posed, i.e. so long as
g(x, y) is continuous on the boundary of Ω, the problem has a unique
solution. Furthermore, u depends in a reasonably nice way on g, i.e.
if we modify g by a small quantity, then u only changes by a small
amount.

• Though the problem is well-posed, it’s only for special regions in
which a solution can be written down explicitly.
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• In cases where the region is not so nice, numerical methods are often
very helpful.

Example 15.1.5. Consider:
∇2u = 0 on Ω

u(outer square) = u1

u(inner square) = u2

Ω = square annulus

2. Neumann Conditions

Let Ω be a “region” with smooth boundary ∂Ω which has unit normal
vector ~n. Given a function g : ∂Ω→ R, the Neumann problem asks for a
function u which satisfies{

∇2u = 0 on Ω

∇u · ~n = g on ∂Ω

In contrast to the Dirichlet problem, the Neumann problem as stated is
not well-posed. To make it well-posed, we must account for two things:

• If u satisfies the problem, consider

v = u+ c

where c is a constant. Then ∇2v = 0. Also, ∇v = ∇u. And thus,
∇v · ~n = g on ∂Ω. Thus v is a solution. So, as stated, solutions to
the Neumann problem are not unique. To take care of this, we often
ask for solutions to the Neumann problem satisfying

ˆ
Ω

u d~x = 0.

• Compatibility condition: We must have that
ˆ
∂Ω

g(ω) dω = 0,

to avoid the existence issue. Essentially, the integral of g over the
boundary is 0.

Why are these conditions necessary?

(a) Physical reasons: Suppose that the Neumann problem is ob-
tained as the steady-state problem associated with the IBVP:

ut = α2∇2u on (0,∞)× Ω

∇u · ~n = g, t > 0, x ∈ Ω

u(0, x) = u0(x)
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If g(x) is non-zero, then we know that th energy across ∂Ω is
either leaking or entering. If a steady-state solution is to make
sense, we need to have, at all times, the net flux of heat energy
through the boundary to be zero:

0 =

ˆ
∂Ω

∇u · ~n =

ˆ
∂Ω

g.

(b) Mathematical : Recall the divergence theorem: If f, g are
twice differentiable, in Ω and Ω has smooth boundary ∂Ω then

ˆ
Ω

(∇2f)g dx =

ˆ
∂Ω

g(x)∇f · ~n ds−
ˆ

Ω

∇g ·∇f dx.

Provided that u solves the IBVP, by setting f = u and g = 1,
the divergence theorem says

ˆ
Ω

∇2u dx =

ˆ
∂Ω

∇u · ~n ds−
ˆ

Ω

∇u ·∇1 dx =

ˆ
∂Ω

∇u · ~n ds.

So, by the IBVP,

0 =

ˆ
∂Ω

∇u · ~n ds =

ˆ
∂Ω

g ds.

Example 15.1.6. Consider

∇2u = 0 on Ω = unit circle

∇u · ~n =
∂u

∂r
(1, θ) = sin(2θ), for allθ ∈ [0, 2π].

Question: does g meet the compatibility condition? YES!

ˆ
∂Ω

g ds =

ˆ 2π

0

sin(2θ) dθ = 0

There’s a solution. In fact, we can verify that it is

U(r, θ) =
−r2 cos(2θ)

2
.

Indeed,

∇2u = urr +
1

r
ur +

1

r2
uθθ = cos(2θ)− cos(2θ) + 2 cos(2θ) = 0.

3. Robin Conditions (Mixed Type)

All are described in terms of the knowledge of u along ∂Ω.
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Chapter 16

Dirichlet Problem on the
Circle

{
∇2 = urr + 1

rur + 1
r2uθθ = 0, 0 < r < 1, θ ∈ [0, 2π]

u(1, θ) = g(θ), θ ∈ [0, 2π]

To solve, we separate variables.

u(r, θ) = R(r)Θ(θ).

Plugging this in, we get

R′′Θ +
1

r
R′Θ +

1

r2
RΘ′′ = 0

and so

r2R′′

R
+
rR′

R
= −Θ′′

Θ
= k.

We obtain

r2R′′ + rR′ − kR = 0

Θ′′ + kΘ = 0.

The ansatz is

R(r) = rn.

So,

n(n− 1)r2rn−2 + nrrn−1 − krn = 0,

89
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i.e.,

(n(n− 1) + n− k)rn = 0 ⇐⇒ n2 − k = 0.

Since we seek periodic solution, we want

k = m2

so that

Θ(θ) = A cos(mθ) +B sin(mθ)

where m ∈ N. So, we have determined k = m2 where m = 0, 1, 2, . . . . So
n = ±m. So, our solution, for each m = 0, 1, 2, . . . is

R(r) = Arm +Br−m.

Here we rule out the r−m solution for m = 1, 2, . . . (since we have singularity
at r = 0). Hence, for each m = 0, 1, 2, . . . we have the solution

un(r, θ) = rm(Am cosmθ +Bm sinmθ)

So we expect the general solution to be of the form

u(r, θ) =

∞∑
n=0

rn(An cosnθ +Bn sinnθ)

And we also want

g(θ) = u(1, θ).

So this gives us

g(θ) = u(1, θ) =

∞∑
n=0

rn(An cosnθ +Bn sinnθ)

This equation will hold provided that An’s and Bn’s are the Fourier sine and
cosine coefficients for g, i.e.,

A0 =
1

2π

ˆ 2π

0

g(α) dα

An =
1

π

ˆ 2π

0

cos(nα)g(α) dα

Bn =
1

π

ˆ 2π

0

sin(nα)g(α) dα.
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So given the problem

{
∇2 = urr + 1

rur + 1
r2uθθ = 0, 0 < r < 1, θ ∈ [0, 2π]

u(1, θ) = g(θ), θ ∈ [0, 2π]

the equation

u(r, θ) =

∞∑
n=0

rn(An cosnθ +Bn sinnθ)

solves the IBVP provided the An, Bn’s are chosen as above.

Note: if Ω is a disk of radius R, then the solution is instead

u(r, θ) =

∞∑
n=0

( r
R

)n
(An cosnθ +Bn sinnθ)

where the constants An, Bn’s are once again given by the exact same formulas.

We would like to write this solution another way that directly involves g

u(r, θ) =
1

2π

ˆ 2π

0

g(α) dα+

∞∑
n=1

( r
R

)n( 1

π

ˆ 2π

0

cos(nα)g(α) cosnθ dα

+
1

π

ˆ 2π

0

sin(nα)g(α) sinnθ dα

)
.

Now we can just write this a single integral:

u(r, θ) =
1

2π

ˆ 2π

0

(
g(α) + 2

∞∑
n=1

( r
R

)n
g(α) (cos(nα) cosnθ + sin(nα) sinnθ)

)
dα.

And so,

u(r, θ) =
1

2π

ˆ 2π

0

g(α)

(
1 + 2

∞∑
n=1

( r
R

)n
(cos(nα) cosnθ + sin(nα) sinnθ)

)
dα.
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Now, let

P = 1 + 2

∞∑
n=1

( r
R

)n
(cos(nα) cosnθ + sin(nα) sinnθ)

= 1 + 2

∞∑
n=1

( r
R

)n
cos(n(θ − α))

= 1 +

∞∑
n=1

( r
R

)n (
ein(θ−α)+e−in(θ−α)

)
= 1 +

∞∑
n=1

( r
R

)n
ein(θ−α) +

∞∑
n=1

( r
R

)n
e−in(θ−α)

= 1 +

∞∑
n=1

( r
R
ei(θ−α)

)n
+

∞∑
n=1

( r
R
e−i(θ−α)

)n
.

We notice that this is a geometric series and it converges on Ω where r/R < 1.
So,

P = 1 +
r
Re

i(θ−α)

1− r
Re

i(θ−α)
+

r
Re
−i(θ−α)

1− r
Re
−i(θ−α)

which we can simplify to

P = 1 +
rei(θ−α)

R− rei(θ−α)
+

re−i(θ−α)

R− re−i(θ−α)

=
R2 − 2R cos(θ − α) + r2 + rRei(θ−α) − r2 + rRe−i(θ−α) − r2

D

=
R2 − r2

R2 − 2rR cos(θ − α) + r2
.

So,

u(r, θ) =
1

2π

ˆ 2π

0

g(α)P dα

=
1

2π

ˆ 2π

0

R2 − r2

R2 − 2rR cos(θ − α) + r2
g(α) dα

=
1

2π

ˆ 2π

0

P (θ − α)g(α) dα

where

P (θ) =
R2 − r2

R2 − 2rR cos θ + r2
.

This is called the convolution on torus.
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Observe that at r = 0, P (θ) = 1,

u(0, φ) =

ˆ 2π

0

g(α) dα = average of g.

Conclusion: u(r, θ) is always equal to the average value along any circle cen-
tering at (r, θ).

16.1 Dirichlet’s Lift

Suppose you to solve Poisson’s equation

(1)

{
∇2u = f on Ω

u = 0 on ∂Ω
.

If we can find any function V such that ∇2V = f , then we will set

u = V −W,

so that

f = ∇2u = ∇2V −∇2W = f −∇2W.

Then we can solve the related problem

(2)

{
∇2W = 0 on Ω

W = V on ∂Ω
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and we’d have the solution to Poisson’s problem.

How about the other way? Suppose we want to solve

(3)

{
∇2u = 0 on Ω

u = f on ∂Ω
.

If we can seek a function V : Ω→ R such that V = f along the boundary, then
we can solve the related problem

(4)

{
∇2W = ∇2V on Ω

W = 0 on ∂Ω
.

Note u = V −W solves the original problem.

16.2 Some other domains

16.2.1 Exterior of a Circle:

Consider {
∇2u = 0 on Ω

u = g on ∂Ω

where Ω is the exterior of a circle of radius R and ∂Ω is the circle of radius R.
Once again, we separate variables.

u(r, θ) = R(r)Θ(θ),

and thus

∇2u = urr +
1

r
ur +

1

r2
uθθ = 0.

So,

r2R′′ + rR′

R
= −k =

−Θ′′

Θ
.

So, {
r2R′′ + rR′ = −kR
Θ′′ − kθ = 0,

where we have shown that k = −n2, n is integer. So, for n 6= 0{
Θn(θ) = An cos(nθ) +Bn sin(nθ)

R(r) = Cnr
n +Dnr

−n .
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But for n = 0,

R(r) = C0 +D0 ln(r).

So we expect solutions

u(r, θ) =

∞∑
n=0

anr
n cos(nθ) + bnr

n sin(nθ)b0 lnn +

+

∞∑
n=1

αnr
−n cos(nθ) + βnr

−n sin(nθ).

Now, we will reject the rn and ln(r) solutions:

u(r, θ) =

∞∑
n=0

αnr
−n cos(nθ) + βnr

−n sin(nθ)

To determine the constants, we identify this as a Fourier series. Recall that

g(θ) =

∞∑
n=0

R−n(αn cos(nθ) + βn sin(nθ)).

By Fourier’s trick:

α0 =
1

2π

ˆ 2π

0

g(θ) dθ

αn = Rn
1

π

ˆ 2π

0

g(θ) cos(nθ) dθ

βn = Rn
1

π

ˆ 2π

0

g(θ) sin(nθ) dθ.

16.2.2 Annulus:

Now, Ω is an annulus between R1 and R2 where R1 < R2, and ∂ΩR1O = ∪R2O .
and 

∇2u = 0

u(R1, θ) = g1(θ)

u(R2, θ) = g2(θ)

.

Here, we no longer rule out any basis solutions. Thus, the general solution is

u(r, θ) =

∞∑
n=0

anr
n cos(nθ) + bnr

n sin(nθ) + b0 ln(r)

+

∞∑
n=1

αnr
−n cos(nθ) + βnr

−n sin(nθ).
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Now, we have to determine an, bn, αn, βn, and we will use g1, g2 to do this:

g1(θ) = a0 + b0 ln(R1) +

∞∑
n=1

(anR
n
1 + αnR

−n
1 ) cos(nθ) + (bnR

n
1 + βnR

−n
1 ) sin(nθ)

g2(θ) = a0 + b0 ln(R2) +

∞∑
n=1

(anR
n
2 + αnR

−n
2 ) cos(nθ) + (bnR

n
2 + βnR

−n
2 ) sin(nθ).

Once again, by Fourier’s trick, we have a linear system to solve for a0, b0:

1

2π

ˆ 2π

0

g1(θ) dθ = a0 + b0 ln(R1)

1

2π

ˆ 2π

0

g2(θ) dθ = a0 + b0 ln(R2).

Similarly, we get another system for an, αn:

1

π

ˆ 2π

0

g1 cos(nθ) dθ = anR
n
1 + αnR

−n
1

1

π

ˆ 2π

0

g2 cos(nθ) dθ = anR
n
2 + αnR

−n
2

And of course:

1

π

ˆ 2π

0

g1 sin(nθ) dθ = bnR
n
1 + βnR

−n
1

1

π

ˆ 2π

0

g2 sin(nθ) dθ = bnR
n
2 + βnR

−n
2 .

Example 16.2.1. Solve:
∇2u = 0, 2 ≤ r ≤ 4

u(2, θ) = 1

u(4, θ) = 2

.

We know that solutions have the form:

u(r, θ) =

∞∑
n=0

anr
n cos(nθ) + bnr

n sin(nθ) + b0 ln(r)+

+

∞∑
n=1

αnr
−n cos(nθ) + βnr

−n sin(nθ).

Solve for the n = 0 cases:

a0 + b0 ln(R1) =
1

2π

ˆ 2π

0

dθ = 1

a0 + b0 ln(R2) =
1

2π

ˆ 2π

0

2 dθ = 2,
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which says,

a0 = 2π − 2π = 0

b0 =
2− 1

ln(4)− ln(2)
=

1

ln(2)
.

Then we solve for an, αn with n 6= 0:

1

π

ˆ 2π

0

g1 cos(nθ) dθ = anR
n
1 + αnR

−n
1

1

π

ˆ 2π

0

g2 cos(nθ) dθ = anR
n
2 + αnR

−n
2

which says

1

π

ˆ 2π

0

cos(nθ) dθ = 0 = an + αn

1

π

ˆ 2π

0

2 cos(nθ) dθ = 0 = an2n + αn2−n

and

an = 0

αn = 0.

Similarly,

bn = 0

βn = 0.

So the solution is

u(r, θ) =
1

ln(2)
ln(r) =

ln(r)

ln(2)

Example 16.2.2. Solve:
∇2u = 0, 1 ≤ r ≤ 2

u(1, θ) = sin(2θ)

u(2, θ) = sin(θ)

.

We know that solutions have the form:

u(r, θ) =

∞∑
n=0

anr
n cos(nθ) + bnr

n sin(nθ)b0 lnn +

+

∞∑
n=1

αnr
−n cos(nθ) + βnr

−n sin(nθ).
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Solve for the n = 0 cases:

a0 + b0 ln(R1) = a0 =
1

2π

ˆ 2π

0

sin(2θ) dθ = 0

a0 + b0 ln(R2) =
1

2π

ˆ 2π

0

sin(θ) dθ = 0,

which says,

a0 = 0

b0 = 0

Then we solve for an, αn with n 6= 0:

1

π

ˆ 2π

0

g1 cos(nθ) dθ = anR
n
1 + αnR

−n
1

1

π

ˆ 2π

0

g2 cos(nθ) dθ = anR
n
2 + αnR

−n
2

which says

1

π

ˆ 2π

0

sin(2θ) cos(nθ) dθ = an + αn

1

π

ˆ 2π

0

sin(θ) cos(nθ) dθ = an2n + αn2−n

and

an = 0

αn = 0.

Similarly,

1

π

ˆ 2π

0

sin(2θ) sin(nθ) dθ = an + αn

1

π

ˆ 2π

0

sin(θ) sin(nθ) dθ = an2n + αn2−n.

So every term is zero except n = 1, 2. For n = 1

a1 + α1 = 0

2a1 +
1

2
α1 = 1

so,

a1 =
2

3

α1 = −2

3
.
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Similarly, for n = 2:

a2 + α2 = 1

4a2 +
1

4
α2 = 0

so,

a2 = − 1

15

α2 =
16

15
.

So, the solution is

u(r, θ) =
2

3
r sin(θ)− 2

3
r−1 sin(θ)− 1

15
r2 sin(2θ) +

16

15
r−2 sin(2θ)
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Chapter 17

Laplace Equations in
Spherical Coordinates

Figure 17.1: Sketch by Jerry Bao

Points in the ball of radius R are described by (r, θ, φ) with 0 ≤ r ≤ R,
π ≤ θ ≤ π, and 0 ≤ φ ≤ π. In this coordinate system,{

∇2u = (r2ur)r + 1
sinφ (uφ sinφ)φ + 1

sin2 φ
uθθ = 0

u(R, θ, φ) = g(R, θ, φ) on ∂Ω = R−sphere.

Solving this problem for a general g is often difficult, so we look at special cases.

1. Assume that g(θ.φ) is constant, i.e., spherically symmetric. We infer
that u(r, θ, φ) = u(r). Thus,

uθ = uφ = 0.
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Hence the PDE now turns into an ODE:

∇2u = (r2ur)r = r2urr + 2rur = 0.

Change of variables: let v = ur, then

r2vr + 2rv = 0

vr +
2

r
v = 0(

ve2 ln(r)
)′

= 0

ve2 ln(r) = C

vr2 = C

v =
C

r2
.

And so,

ur = Cr−2.

Hence

u =
−C
r

+ b

For the problem in the ball, C = 0 for solution to be bounded. Thus,

u(r) = b.

Now, matching this with the boundary conditions, we get

u(1) = g.

And so the solution is

u(r, θ, φ) = g = constant.

So, for example, if we were to charge a metal sphere with 10 volts: To find
the interior electric field, we solve Laplace’s equation{

∇2u = 0.

u(r) = 10V
,

which gives

~E = ∇u(r, θ, φ) = 0

everywhere inside the ball.
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Figure 17.2: Sketch by Jerry Bao

Figure 17.3: Spherical shells by Jerry Bao

2. Spherical shells:

Suppose we have the problem
∇2u = 0

u(R1, θ, φ) = A

u(R2, θ, φ) = B

where Ω is the region between the shells of radii R1 and R2 respectively.
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We know that solutions have the form

u(r) =
a

r
+ b.

And so, {
a
R1

+ b = A =⇒ a+ bR1 = AR1

a
R2

+ b = B =⇒ a+ bR2 = BR2

.

Subtracting the top by the bottom gives

b =
BR2 −AR1

R2 −R1
.

So,

a = AR1 −
BR1R2 −AR2

1

R2 −R1
=

(A−B)R1R2

R2 −R1
.

Therefore,

u(r) =
(A−B)R1R2

r(R2 −R1)
+
BR2 −AR1

R2 −R1

We have the following sketches (credit to Jerry Bao):

3. Assume that Ω = R−ball and g = g(φ) where 0 ≤ φ ≤ π. Here,
u(r, θ, φ) = u(r, φ) and we have{

(r2ur)r + 1
sinφ (uφ sinφ)φ = 0

u(R,φ) = g(φ)
.

We once again solve using separation of variables. Assume that

u(r, θ) = R(r)Φ(φ).

Subjecting this to the PDE:

(r2R′)′Φ +
1

sinφ
(Φ′ sinφ)′R = 0
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or equivalently,

(r2R′)′

R
= − (Φ′ sinφ)′

Φ sinφ
= n(n− 1)

where n(n+ 1) = k. This gives two ODE’s:

r2R′′ + 2rR′ + n(n+ 1)R = 0

which is called the Euler’s equations and

(Φ′ sinφ)′ + n(n+ 1)Φ sinφ = 0

which is called the Legendre’s equation. Solutions to the Euler’s equa-
tion is:

R(r) = arn + br−(n+1).

To solve the Legendre’s equation, we do a substitution: x = cosφ to get:

(1− x2)
d2Φ

dx2
− 2x

dΦ

dx
+ n(n+ 1)Φ = 0

where −1 ≤ x ≤ 1. To obtain the (one) bounded solution, it has to be the
case that n ∈ N. The solutions are

P0(x) = 1

P1(x) = x

P2(x) =
1

2
(3x1 − 1)

. . .

Pn(x) =
1

2nn!

dn

dxn
(
(x2 − 1)n

)
These are called the Legendre’s Polynomials, and the last formula is called
Rodriguez’s Formula.

So we have that

Φ(φ) = anPn(x) = anPn(cosφ)

are solutions, and so by the principle of superposition we expect

u(r, φ) =

∞∑
n=0

anr
nPn(cosφ)
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where we have reject solutions with rn by boundedness. What about BC?
We want that:

g(φ) = u(1, φ) =

∞∑
n=0

anPn(cosφ).

So,

ˆ π

0

g(φ)Pm(cosφ) sinφdφ =

∞∑
n=0

ˆ π

0

anPn(cosφ)Pm(cosφ) sinφdφ.

With Rodriguez’s Formula:

ˆ π

0

Pn(cosφ)Pm(cosφ) sinφdφ =

ˆ 1

−1

Pn(x)Pm(x) dx

=

{
2

2m+1 n = m

0 else
.

So, for Ω = 1−ball, and ∂Ω = 1−sphere, the solution to{
∇2u = 0 on Ωu(1, θ, φ) = g(φ)

is given by

u(r, φ) =

∞∑
n=0

anr
nPn(cosφ)

where

an =
2n+ 1

2

ˆ π

0

g(φ)Pn(cosφ) sinφdφ

and

Pn(x) =
1

2nn!

dn

dxn
(
(x2 − 1)n

)
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Poisson’s Problem

Suppose we have the problem{
∇2u = f(r, θ) Ω = unit circle, θ ∈ [0, 2π], 0 ≤ r ≤ 1

u(1, θ) = 0 ∀θ ∈ [0, 2π]
.

Let us look at a couple of interpretations of this. The solution is the steady-state
temperature with time-independent heat source f and zero temperature on the
boundary. Another interpretation is electrostatics. Essentially the solution is
the electric potential in Ω given a charged source of −f(r, θ), while the boundary
is grounded.

What is the general idea? We consider an easier problem with point sources.
Suppose that we’re looking at a circle of radius R with a single point source of
charge −q. We want to understand what happens along the boundary of the
circle. The total electrical energy inside the circle is q, and this should be equal
to the total flux over the boundary:

q = −
ˆ 2π

0

ur(r)r dθ = −2πur(r) · r.
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So, the solution is

ur(r) =
−q
2πr

.

And we find that the potential due to this point charge is

u(r) =
−q
2π

ln(r) =
q

2π
ln

(
1

r

)
.

So, thinking in terms of charge density, we can forget about q and focus on
the function (1/2π) ln(1/r). Going to geometry at hand. Suppose that a point
charge q = 1 is placed inside the circle at (ρ, φ), while we’re standing at point
(r, θ). The distance R between us and the charge is

R =
√
r2 − 2rρ cos(θ − φ) + ρ2

by the law of cosine. We know that

utest(r, θ) =
1

2π
ln

(
1

r

)
satisfies the Poisson’s equation with point charge at ρ, φ, but it won’t satisfy
the zero boundary condition. So, how do we get the boundary conditions to be
satisfied?

To get zero boundary conditions, we imagine another charge. Here is the
idea: equipotential lines. Placing the charge on the outside creates constant
potential lines which are circles.

Method of images: Place a charge q = −1 at (1/ρ, φ) making the circle
of radius 1 a line of constant potential.

R =
√
r2 − 2rρ cos(θ − φ) + ρ2

R̄ =

√
r2 − 2r

ρ
cos(θ − φ) +

1

ρ2
.
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Our new “candidate” solution becomes:

uc(r, θ) =
1

2π
ln

(
1

R

)
− 1

2π
ln

(
1

R̄

)
The claim is that uc(1, θ) is constant for all θ. Let us investigate uc on the

boundary:

uc(1, θ) =
1

2π
ln

(
R̄

R

)
=

1

2π
· 1

2
· ln

(
1− 2

ρ cos(θ − φ) + 1
ρ2

1− 2ρ cos(θ − φ) + ρ2

)

=
1

4π
ln

(
1

ρ2
·

1− 2
ρ cos(θ − φ) + 1

ρ2

1
ρ2 −

2
ρ cos(θ − φ) + 1

)

=
1

4π
ln

(
1

ρ2

)
=

1

2π
ln

(
1

ρ

)
which is constant and independent of θ. So then our “adapted candidate”

G(r, θ, ρ, φ) = uadapted =
1

2π
ln

(
1

R

)
− 1

2π
ln
(
R̄
)
− 1

2π
ln

(
1

ρ

)
which we can also write as

G(r, θ, ρ, φ) =
1

2π
ln

(
ρR̄

R

)

=
1

2π
ln

ρ
√
r2 − 2 rρ cos(θ − ρ) + 1

ρ2√
r2 − 2rρ cos(θ − ρ) + ρ2


=

1

4π
ln

(
ρ2r2 − 2rρ cos(θ − φ) + 1

r2 − 2rρ cos(θ − ρ) + ρ2

)
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So, given a point charge of charge 1 at ρ, φ, G(r, θ, ρ, φ) satisfies∇
2u = Delta function =

{
1 at (ρ, φ)

0 else

u(1, θ) = 0

The next step is building up to f(r, θ) by assigning this “bumping” function to
the value f at every point. This means

u(r, θ) =

ˆ 1

0

ˆ π

−π
G(r, θ, ρ, φ)f(ρ, φ)ρ dφ dρ

We see that u(1, θ) = 0 and ∇2u = 0 on Ω. This gives the solution, and we call
G the Green’s function.
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Summary

1. The heat equation (parabolic problems)

∂u

∂t
= ∇2u.

and {
ut = uxx

u(0, x) = u0(x)
.

When Ω = R we found that

u(t, x) =
1√
4πt

ˆ
R
u0(y)e

−(x−y)2
4t dy

2. Laplace and Poisson (elliptic problems){
∇2u = 0

u = g

which are also time-independent.

3. The wave equation (hyperbolic problem)

∂2u

∂t2
= ∇2u x ∈ R

u(t, x) = u0(x) t > 0.

Observe that if

u(t, x) = u0(x− t),
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called the d’Lambert’s solution, and assuming that u0(x) ∈ C2,

∂2u

∂t2
=

∂

∂t
(−u′0(x− t)) = u′′0(x− t),

and

∇2u =
∂2

∂t2
u0(x− t) = u′′0(x− t).

So this is a solution.

Here we’re assuming that u0 is twice differentiable. u moves at finite
speed (finite speed of propagation), and remains localized. There’s also
no smoothing - in contrast to the heat equation.

Consider the heat solution

u(t, x) =
1√
4πt

ˆ
R
u0(y)e

−(x−y)2
4t dy

is a bell curve under the BC of the wave equation (say u0(x) is a square
pulse). However, this has infinite speed of propagation and does not re-
main localized. The heat equation has smoothing property.



Chapter 20

Problems and Solutions

20.1 Problem set 1

Exercise.

Problem. 2, Lesson 2. The heat equation is

ut = α2uxx + 1, with 0 < x < 1.

Suppose u(0, t) = 0 and u(1, t) = 1. What is the steady-state temperature of
the rod?

Solution. Stead-state temperature can be found by setting ut(x, t) = 0 for
0 < x < 1. It follows that α2uxx(x, t) + 1 = 0. In addition, the temperature
profile is no longer time-dependent, so u(x, t)→ u(x). These conditions give

uxx(x) = − 1

α2

u(x) = − 1

2α2
x2 + Cx+D.

Applying the boundary conditions u(0, t) = 0 and u(1, t) = 1, we can find C
and D: {

u(0) = 0 = D

u(1) = − 1
2α2 + C = 1

.

So, C = 1 + 1/sα2. The temperature profile of the rod is then

usteady-state(x) = − 1

2α2
x2 +

(
1 +

1

2α2

)
x.
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Problem. 3, Lesson 2. The heat equation is

ut = α2uxx − βu, with 0 < x < 1.

Suppose the BC is u(0, t) = 1 and u(1, t) = 1. What is the steady-state tem-
perature of the rod?

Solution. Again, we set ut = 0 to find the steady-state temperature profile.
This forces α2uxx − βu = 0, i.e., α2uxx = βu. Next, since the temperature is
no longer time-dependent, we can let u(x, t) → u(x). Now, because β and α2

are both positive numbers, the solution to this ODE has the form

usteady-state = u(x) = Ce
−
√

β

α2 x +De

√
β

α2 x.

Let us denote
√
β/α2 as φ. To find the coefficients C and D, we apply the

boundary condition: {
u(0) = C +D = 1

u(1) = Ce−φ +Deφ = 1.

Solving this linear system of equation in Mathematica we find

C =
eφ

1 + eφ

D =
1

1 + eφ
.

So, the steady-state temperature profile is

us(x) =
eφ

1 + eφ
e−φx +

1

1 + eφ
eφx =

1

1 + eφ

(
eφ(1−x) + eφx

)
,

where

φ =

√
β

α2
.

Mathematica code and graph of steady-state temperature distribution:
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Exercise.

Problem. 1, Lesson 3. Sketch the solution to the IBVP (Farlow, 3.6) for dif-
ferent values of time. Check if they agree with the boundary conditions. What
is the steady-state temperature of the rod? Is this obvious?

The IBVP:
PDE : ut = α2uxx, x ∈ (0, 200), t ∈ (0,∞)

BC1 : ux(0, t) = 0, t ∈ (0,∞)

BC2 : ux(200, t) = −hk [u(200, t)− 20], t ∈ (0,∞)

IC : u(x, 0) = 0, x ∈ [0, 200]

Solution 20.1.1. Sketches:

Intuitively, the steady-state temperature of the rod is just 20◦C, since the
rod in the problem, which is initially at 0◦C, is simply being warmed up by the
20◦C water. We can of course show this mathematically. By the steady-state
condition, ut = 0 = uxx. This forces uxx = Cx+D. But by the first boundary
condition ux(0, t) = 0, require that C = 0. The second boundary condition
requires that us,x = C = 0 = (−h/k)[u(200, t)− 20] = (−h/k)[200C +D − 20],
which means D = 20. So, the steady-state temperature profile, not surprisingly,
is 20◦C uniform along the length of the rod.
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Problem. 2, Lesson 3. Interpret the IBVP:
PDE : ut = α2uxx, x ∈ (0, 1), t ∈ (0,∞)

BC1 : u(0, t) = 0, t ∈ (0,∞)

BC2 : ux(1, t) = 1, t ∈ (0,∞)

IC : u(x, 0) = sin(πx), x ∈ [0, 1]

Solution 20.1.2.

Interpretation: The PDE suggests that we are dealing with heat flow in one
dimension, so we can imagine a rod of length 1 with no laterally heat transfer.
The first boundary condition suggests that the temperature is held fixed at 0
at x = 0 for all t. The second boundary condition suggests that temperature is
increasing (at a constant rate) at x = 1 end. The initial condition tells us that
initially, the temperature profile of the rod has a sinusoidal distribution across
the rod’s length, with the ends having temperature of 0 (sin(0) = sin(π) = 0)
and the middle x = 1/2 having the highest temperature of 1.

Steady-state? The steady-state condition requires that uxx = 0, so again,
we have us(x) = Cx + D, where C,D are real constants. The first bound-
ary condition requires D = 0. The second boundary condition requires that
ux(1) = C × 1 = C = 1. Therefore, in the long run, us(x) = x. So, the stead-
state temperature at each point of the rod has the same value as the position
(from the 0 degree end) of that point on the rod.

Sketches:
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Problem. 3, Lesson 3. Interpret the following IBVP:
PDE : ut = α2uxx, x ∈ (0, 1), t ∈ (0,∞)

BC1 : ux(0, t) = 0, t ∈ (0,∞)

BC2 : ux(1, t) = 0, t ∈ (0,∞)

IC : u(x, 0) = sin(πx), x ∈ [0, 1]

Solution 20.1.3.

Interpretation: The PDE suggests that we are dealing with heat flow in one
dimension, so we can imagine a rod of length 1 with no laterally heat transfer.
The boundary conditions suggest that there are no temperature gradients at the
ends of the rod. So we imagine the rod being insulated at the ends. The initial
condition is like that in the previous problem where the temperature profile of
the rod has a sinusoidal distribution across the rod’s length, with the ends being
at zero degrees (sin(0) = sin(π) = 0) and the middle x = 1/2 having the highest
temperature of 1.

Steady-state: The steady-state condition requires that uxx = 0, i.e., us(x) =
Cx+D, where C,D are real constants. Since the temperatures are fixed at the
end points, us,x = C = 0. So the steady state temperature is D, which takes
some value between 0 and 1 as t→∞. The steady-state temperature profile is
the same along the length of the rod.

Sketches:
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Exercise.

Problem. 3, Lesson 4. Derive the heat equation

ut =
1

cρ
∂x[k(x)ux] + f(x, t)

for the situation where the thermal conductivity k(x) depends on x.

Solution. We can start the derivation from step (4.2) in Farlow’s, modify k →
k(x). The conservation of energy gives:

cρA

ˆ x+∆x

x

ut(s, t) ds = A

(
k(x+ ∆x)ux(x+ ∆x, t)− k(x)ux(x, t) +

ˆ x+∆x

x

f(s, t) ds

)
.

By the MVT, there exists ζ ∈ (x, x+ ∆x) such that

cρut(ζ, t)∆x = k(x+ ∆x)ux(x+ ∆x, t)− k(x)ux(x, t) + f(ζ, t)∆x,

i.e.,

ut(ζ, t) =
1

cρ

{
k(x+ ∆x)ux(x+ ∆x, t)− k(x)ux(x, t)

∆x

}
+

1

cρ
f(ζ, t)

Letting ∆x → 0, we turn the term with ∆x into a derivative of a composition
defined as UK(x, t) = k(x)ux(x, t). The result is

ut(x, t) =
1

cρ
∂x(k(x)ux(x, t)) + f(x, t),

where we simply let f(x, t) absorb the constant (cρ)−1. We have obtained the
heat equation with x-dependent thermal conductivity.
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Exercise.

Problem. 1, Lesson 5. Show that

u(x, t) = e−λ
2α2t(A sinλx+B cosλx)

satisfies the PDE ut = α2uxx for A,B, λ ∈ R.

Solution. We can compute the partial derivatives and verify that u(x, t) solves
the PDE “by inspection.” The t-derivative gives the same u(x, t), multiplied by
a factor of −λ2α2, while the x-second derivative also gives u(x, t), but multiplied
by factor of λ2. So, these expressions differ by a factor of α2. Mathematically:

ut = −λ2α2u(x, t) = α2uxx.

Hence, u(x, t) solves the given PDE.
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Problem. 2, Lesson 5. Let δmn denotes the Kronecker delta, where m,n are
non-negative whole numbers. Show

ˆ 1

0

sin(πmx) sin(πnx) dx =
1

2
δmn

Solution. Applying the hinted trigonometric identity, we have

ˆ 1

0

sin(πmx) sin(πnx) dx =
1

2

ˆ 1

0

cos[(m− n)πx]− cos[(m+ n)πx] dx

=
1

2

ˆ 1

0

cos[(m− n)πx] dx− 1

2

ˆ 1

0

cos[(m+ n)πx] dx

At this point, we can argue why the equality given by the problem is true
without much computation. The argument goes as follows. If m = n, then
the second integral vanishes because cos(xkπ), where k is an even number and
x ∈ [0, 1], is symmetric about x = 1/2 and y = 0. If m 6= n, then m − n and
m+n are either odd or even. If they are even (and positive), then both integrals
on the right hand side vanish. If they are odd, then we can assume (without
loss of generality) that m is odd and n is even. This makes sin(πmx) sin(πnx)
symmetric about x = 1/2 and y = 0, so the integral also vanishes over x ∈ [0, 1].
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Problem. 5, Lesson 5. What is the solution to problem 4 in Farlow, Lesson 5
(which also requires doing 3) if the initial condition is changed to

u(x, 0) = sin(2πx) +
1

3
sin(4πx) +

1

5
sin(6πx)

Solution. We should quickly do problem 3 first. If Φ(x) = 1, x ∈ [0, 1].
Applying the formula for the coefficients An:

An = 2

ˆ 1

0

Φ(x) sin(nπx) dx = 2

ˆ 1

0

sin(nπx) dx =
2

nπ
(1− cos(nπx)) =

{
4
nπ , n odd

0, n even
.

So, the Fourier expansion for Φ(x) = 1 is

Φ(x) = 1 =
4

π

[
sin(πx) +

1

3
sin(3πx) +

1

5
sin(5πx) + . . .

]
.

In problem 4, the boundary and initial conditions suggests using Φ(x) from prob-
lem 3. So, given the formula for u(x, t), we simply substitute in the coefficients
to generate a Fourier expansion for u(x, t):

u(x, t) =

∞∑
n=1

Ane
−(nπ)2t sin(nπx)

=
4

π

[
e−(π)2t sin(πx) +

1

3
e−(3π)2t sin(3πx) +

1

5
e−(5π)2t sin(5πx) + . . .

]
.

Back to problem 5, if the initial condition is given as u(x, 0) above, then we might
think we have to re-do and find a new Fourier expansion. But by inspecting
the form of u(x, 0), we can see that it is just a truncated Fourier expansion. So
there is no need to find the coefficients An since they are already given to us.
So, carefully picking out the coefficients, we get the new solution

u(x, t) = e−(2π)2t sin(2πx) +
1

3
e−(4π)2t sin(4πx) +

1

5
e−(6π)2t sin(6πx).
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20.2 Problem set 2

Exercise. Problem 2, Lesson 6
Transform

PDE : ut = uxx, 0 < x < 1

BCs :

{
u(0, t) = 0

u(1, t) = 1
0 < t <∞

IC : u(x, 0) = x2, 0 ≤ x ≤ 1

to zero BCs and solve the new problem. What will the solution to this problem
look like for different values of time? Does the solution agree with your intuition?
What is the steady-state solution? What does the transient solution look like?

Solution.
Let u(x, t) = U(x, t)+S(x, t) where U(x, t) is the transient solution while S(x, t)
is the steady-state solution to the IBVP. To find the steady-state solution S(x, t),
we set ut = 0 and U(x, t) = 0. Applying the boundary conditions, we find

S(x, t) = S(x) = Cx+D = x.

So,

u(x, t) = x+ U(x, t).

Since ut = Ut and uxx = Uxx, we can re-write the origin IBVP as

PDE : Ut = Uxx, 0 < x < 1

BCs :

{
U(0, t) = 0

U(1, t) = 0
0 < t <∞

IC : U(x, 0) = x2 − x, 0 ≤ x ≤ 1

The solution U(x, t) to this IBVP is given by

U(x, t) =
∞∑
n=1

Ane
−(nπ)2t sin(nπx),

where

An = 2

ˆ 1

0

(x2 − x) sin(nπx) dx = 2
−2 + 2 cos(nπ) + nπ sin(nπ)

n3π3

=

{
−8
n3π3 , n odd

0, n even.
.

The second equality comes from integrating in Mathematica, which can also be
done with integration by parts. The transient solution is then

U(x, t) = − 8

π3
e−(π)2t sin(πx)− 8

27π3
e−(3π)2t sin(3πx)− 8

125π3
e−(5π)2t sin(5πx) + . . .
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The full solution to the IBVP is

u(x, t) = x− 8

π3

∞∑
n=1

1

n3
e−(nπ)2t sin(nπx), n odd

= x− 8

π3
e−(π)2t sin(πx)− 8

27π3
e−(3π)2t sin(3πx)− 8

125π3
e−(5π)2t sin(5πx) + . . .
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Mathematica code:

In[6]:= Simplify[Integrate [(x^2 - x) Sin[n*Pi*x], {x, 0, 1}]]

Out [6]= (-2 + 2 Cos[n \[Pi]] + n \[Pi] Sin[n \[Pi ]])/(n^3 \[Pi]^3)

In[4]:= F[n_] := Simplify[Integrate [(x^2 - x) Sin[n*Pi*x], {x, 0, 1}]]

In[7]:= Table[F[n], {n, 1, 10}]

Out [7]= { -(4/\[Pi]^3), 0, -(4/(27 \[Pi]^3)), 0, -(4/(
125 \[Pi]^3)), 0, -(4/(343 \[Pi]^3)), 0, -(4/(729 \[Pi]^3)), 0}

Solutions for different values of time:

Mathematica code:

U[x_, t_] :=
x - (8 E^(-\[Pi]^2 t) Sin [\[Pi] x])/\[Pi]^3 - (
8 E^(-9 \[Pi]^2 t) Sin[3 \[Pi] x])/(27 \[Pi]^3) - (
8 E^(-25 \[Pi]^2 t) Sin[5 \[Pi] x])/(125 \[Pi]^3)

Show[Plot[U[x, 0], {x, 0, 1}], Plot[U[x, 0.1], {x, 0, 1}],
Plot[U[x, 1], {x, 0, 1}]]

The solution matches my intuition. The IBVP simply states that the tem-
perature at the ends are fixed, and that the temperature is initially distributed
across the rod as x2. Since the temperatures at the ends are fixed it is expected
that in the long run the temperature increases uniformly across the rod, in
agreement with the steady-state solution.
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Exercise. Problem 3, Lesson 6 Transform

PDE : ut = uxx, 0 < x < 1

BCs :

{
ux(0, t) = 0

ux(1, t) + hu(1, t) = 1
0 < t <∞

IC : u(x, 0) = sin(πx), 0 ≤ x ≤ 1

into a new problem with zero BCs. Is the new PDE homogeneous?

Solution.

Once again, we let u(x, t) = U(x, t)+S(x, t) where S(x, t) is the steady-state
solution. S(x, t) has the form:

S(x, t) = A(t)
(

1− x

L

)
+B(t)

( x
L

)
= A(t) (1− x) +B(t) (x) ,

where

S(0, t) = A(t)

S(1, t) = B(t)

Sx(0, t) = B(t)−A(t) = Sx(1, t).

Applying the boundary conditions,(
−1 1
−1 h+ 1

)(
A(t)
B(t)

)
=

(
0
1

)
Solving the system for A(t) and B(t) gives

A(t) = B(t) =
1

h

So, the steady-state solution is

S(x, t) =
1

h
(1− x+ x) =

1

h
,

which is independent of t and x. Therefore, ut = Ut = uxx = Uxx. Applying
the initial condition, we find

u(x, 0) = S(x, 0) + U(x, 0) =
1

h
+ U(x, 0) = sin(πx)

and

ux(1, t) + hu(1, t) = U(1, t) + hU(1, t) +
h

h
= 1.
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So, the new IBVP is:

PDE : Ut = Uxx, 0 < x < 1

BCs :

{
Ux(0, t) = 0

Ux(1, t) + hU(1, t) = 0
0 < t <∞

IC : u(x, 0) = sin(πx)− 1

h
, 0 ≤ x ≤ 1

We notice that the new PDE is still homogeneous.
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Exercise. Problem 1, Lesson 7 Solve the following heat-flaw problem:

PDE : ut = uxx, 0 < x < 1, 0 < t <∞

BCs :

{
u(0, t) = 0

ux(1, t) = 0
0 < t <∞

IC : u(x, 0) = x, 0 ≤ x ≤ 1

by separation of variables. Does your solution agree with the your intuition?
What is the steady-state solution?

Solution.

By separation of variables, we assume u(x, t) = T (t)X(x). By the PDE,

T ′(t)

T (t)
=
X ′′(x)

X(x)
= µ,

where µ is some constant. We reject solutions with µ > 0 on physical grounds.
If µ = 0, then T ′(t) = X ′′(x) = 0, so

u(x, t) = Ax+B.

To satisfy the boundary conditions:

u(0, t) = B = 0

ux(1, t) = A = 0.

This u(x, t) = 0, a trivial solution. If µ < 0, then we let µ = −λ2. We
immediately have

T (t) = Ae−λ
2t

X(x) = C sin(λx) +B cos(λx).

So, the general solution is

u(x, t) = e−λ
2t(A sin(λx) +B cos(λx)).

Subjecting u(x, t) to the first boundary condition, we find B = 0, which reduces
the solution to

u(x, t) = Ae−λ
2t sin(λx).

The second boundary condition gives

A cos(λ) = 0.

Assuming A 6= 0, so that our solution is not trivial,

λ =
kπ

2
, k odd.
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The solution is then

u(x, t) =

∞∑
k=1

Ake
−(kπ/2)2t sin

(
kπ

2
x

)
, k odd.

To find the coefficients Ak, we invoke Fourier’s trick, for odd n’s:

ˆ 1

0

u0(x) sin
(nπ

2
x
)
dx =

ˆ 1

0

sin
(nπ

2
x
) ∞∑
k=1

Ak sin

(
kπ

2
x

)
dx

=

∞∑
k=1

Ak

ˆ 1

0

sin
(nπ

2
x
)

sin

(
kπ

2
x

)
dx

=

∞∑
k=1

1

2
Akδ

k
n

=
1

2
An.

So,

Ak = 2

ˆ 1

0

x sin

(
kπ

2
x

)
dx, k odd.

So, the transient solution has the form:

U(x, t) =

∞∑
k=1

Ake
−(kπ/2)2t sin

(
kπ

2
x

)
, k odd,

and Ak is given above. The steady-state solution is 0. So, the full solution is
then

u(x, t) = U(x, t).

Mathematica code:

A[k_] := 2* Integrate[x*Sin[k*Pi*x/2], {x, 0.0001 , 1}]

(2 (-2 k \[Pi] Cos[(k \[Pi])/2] + 4 Sin[(k \[Pi ])/2]))/(k^2 \[Pi]^2)

U[x_, t_] :=
Sum [(2 (-2 (2 k - 1) \[Pi] Cos [((2*k - 1) \[Pi])/2] +
4 Sin [((2*k - 1) \[Pi ])/2]))/((2 k - 1)^2 \[Pi]^2)*
E^(-t*((2 k - 1)*Pi )^2)* Sin[(2 k - 1)*Pi*x/2], {k, 1, 100}]

Show[Plot[U[x, 0], {x, 0, 1}], Plot[U[x, 0.05], {x, 0, 1}],
Plot[U[x, 0.01], {x, 0, 1}], Plot[U[x, 0.1], {x, 0, 1}],
Plot[U[x, 0.02], {x, 0, 1}], Plot[U[x, 0.2], {x, 0, 1}],
Plot[U[x, 1], {x, 0, 1}], AxesLabel -> {x, u}]
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The figure below shows solutions for different values of time.

The solution has good sense, first because the steady-state solution is zero - as
suggested by the BCs and IC. Second, at t = 0, u(x, 0) = x. Third, the boundary
condition requires the temperature at x = 0 stay fixed and the temperature
gradient at x = 1 to be zero, which the plots also illustrate nicely.
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Exercise. Problem 2, Lesson 7 What are the eigenvalues and eigenfunctions
of the Sturm-Liouville problem?

ODE : X ′′ + λX = 0, 0 < x < 1

BCs :

{
X(0) = 0

X ′(1) = 0

What are the functions p(x), q(x), and r(x) in the general Sturm-Liouville
problem for this equation?

Solution.

1. p(x) = 1.

2. q(x) = 0.

3. r(x) = 1.

To find the eigenvalues and the eigenfunctions, we have to solve the IVP. By
the ODE, we know that

X(x) = A sin
(√

λx
)

+B cos
(√

λx
)
.

Applying the initial conditions, we find

B = 0

−A
√
λ cos

(√
λ
)

= 0.

i.e., for n odd, we find the eigenvalues:

λn =
(nπ

2

)2

.

And so the eigenfunctions are

Xn(x) = An sin
(nπx

2

)
.
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Exercise. 2. Problem 3, Lesson 7 Solve the following problem with insulated
boundaries:

PDE : ut = uxx, 0 < x < 1, 0 < t <∞

BCs :

{
ux(0, t) = 0

ux(1, t) = 0
0 < t <∞

IC : u(x, 0) = x, 0 ≤ x ≤ 1

Does your solution agree with your interpretation of the problem? What is the
steady-state solution? Does this make sense?

Solution.

Let u(x, t) = U(x, t) + S(x, t) where S(x, t) is the steady-state and U(x, t)
is the transient solution. We can construct the steady-state solution as

S(x, t) = A(t) (1− x) +B(t)x.

As before, by applying the boundary conditions, we require that A(t) and B(t)
solve the following linear system(

−1 1
−1 1

)(
A(t)
B(t)

)
=

(
0
0

)
.

The system has infinitely many solutions, but we get A(t) = B(t). Assuming
that at steady-state, ut = uxx = 0 = St, we get

S(x, t) = A(t)(1− x) +A(t)x = A(t) = Λ

where Λ is constant.

Applying separation of variables to this PDE, we know that

T (t) = e−λ
2t

Xn(x) = A cos(λx) +B sin(λx).

Applying the boundary conditions,

B = 0

λn = nπ.

So, the general solution is

u(x, t) = Λ +

∞∑
n=1

Ane
−(nπ)2t cos(nπx).
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Next, we want to find the coefficients An. Since there is a cos involved, we will
use Fourier’s trick with a cosine and the identity

ˆ 1

0

cos(mπx) cos(nπx) =
1

2
δmn .

This gives

ˆ 1

0

u0(x) cos(mπx) dx =

ˆ 1

0

cos(mπx)

∞∑
n=1

An cos(nπx) dx

=

∞∑
n=1

An
1

2
δnm

=
Am
2
.

So, we can compute Am in Mathematica (or by integration by parts):

Am = 2

ˆ 1

0

x cos(mπx) dx =
2(πm sin(πm) + cos(πm)− 1)

π2m2

=
2(cos(πm− 1))

m2π2

=

{
−4
m2π2 , m odd

0, m even.

The general solution is then

u(x, t) = Λ− 4

π2

∞∑
n=1

1

n2
e−(nπ)2t cos(nπx), n odd

= Λ− 4

π2
e−(π)2t cos(πx)− 4

9π2
e−(3π)2t cos(3πx)− 4

25π2
e−(5π)2t cos(5πx) + . . .

To find the steady-state solution, we only need to look for Λ such that u(0, 0) = 0
(to satisfy the initial condition), i.e.,

Λ =
4

π2

∞∑
n=1

1

n2
, n odd

=
1

2
.

So steady-state solution is S(x, t) = 1/2, and the full solution is

u(x, t) =
1

2
− 4

π2

∞∑
n=1

1

n2
e−(nπ)2t cos(nπx), n odd

=
1

2
− 4

π2
e−(π)2t cos(πx)− 4

9π2
e−(3π)2t cos(3πx)− 4

25π2
e−(5π)2t cos(5πx) + . . .

Mathematica code:
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Simplify[Integrate[Cos[m*Pi*x]*Cos[n*Pi*x], {x, 0, 1}]]
(m Cos[n \[Pi]] Sin[m \[Pi]] - n Cos[m \[Pi]] Sin[n \[Pi ]])/(
m^2 \[Pi] - n^2 \[Pi])

2* Integrate[x*Cos[m*Pi*x], {x, 0, 1}]
(2 (-1 + Cos[m \[Pi]] + m \[Pi] Sin[m \[Pi ]]))/(m^2 \[Pi]^2)

A[m_] := (2 (-1 + Cos[m \[Pi]] + m \[Pi] Sin[m \[Pi ]]))/(m^2 \[Pi]^2)
Table[A[m], {m, 1, 7}]
{ -(4/\[Pi]^2), 0, -(4/(9 \[Pi]^2)), 0, -(4/(25 \[Pi]^2)), 0, -(4/(
49 \[Pi ]^2))}

N[Sum [(4/Pi ^2)*(1/(2 n - 1)^2)*1 , {n, 1, 10000}]]
0.49999
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20.3 Problem set 3

Exercise. 1. For the following equations and associated boundary conditions
(together, Sturm-Liouville Problems), determine the form of the eigenfunctions
and give a formula (in terms of the determinant as we did in lecture) of the
associated eigenvalues λ. Find an approximate value for λ1, the smallest eigen-
value and estimate λn for large values of n.

Recall from class that λ was an eigenvalue of the associated Sturm-Liouville
Problem: 

ODE: L[u](x) = λr(x)u(x) 0 < x < 1

BC1: a1u(0) + b1u
′(0) = 0

BC2: a2u(1) + b2u
′(1) = 0

where L[u] = −(p(x)u′(x))′ + q(x)u(x) provided, for linearly independent solu-
tions u1 and u2 to the differential equation L[u] = λru,

det(A(λ)) = det

(
a1u1(0) + b1u

′
1(0) a1u2(0) + b1u

′
2(0)

a2u1(1) + b2u
′
1(1) a2u2(1) + b2u

′
2(1)

)
= 0.

1. y′′ − λy = 0 y(0) + y′(0) = 0, y(1) = 0.

Solution. First, we identify:

p(x) = 1, q(x) = 0, r(x) = −1.

a1 = 1 b1 = 1, a2 = 1, b2 = 0.

The associated S-L problem is
ODE: L[y](x) = y′′ = −λy 0 < x < 1

BC1: y(0) + y′(0) = 0

BC2: y(1) = 0

The general solution to the ODE has the form

y(x) =
(
y1 y2

)(C1

C2

)
=
(
ei
√
λx e−i

√
λx
)(C1

C2

)
where C1 and C2 are determined by the BCs, which give rise to the system(

0
0

)
= A

(
C1

C2

)
=

(
1 + i

√
λ 1− i

√
λ

ei
√
λ e−i

√
λ

)(
C1

C2

)
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To get non-trivial solutions, we require det(A(λ)) = 0, i.e.,

(1 + i
√
λ)e−i

√
λ − (1− i

√
λ)ei

√
λ = 0.

Let L =
√
λ

2
, (we’re assuming λ is positive in this problem)

0 = (1 + iL)e−iL − (1− iL)eiL

= (1 + iL)(cosL − i sinL)− (1− iL)(cosL+ i sinL)

= 2i(L cosL − sinL)

if and only if

tanL = L .

Since we require λ 6= 0 is get non-trivial solutions, we only consider
L1,L2, . . . . Numerically approximate in Mathematica gives

L1 ≈ 4.493409457909114

Ln ≈ n.

Converting L back to λ and requiring λ < 0, we get

λ1 ≈ 20.1907

λn ≈ n2 n large

While we can’t find C1 and C2 exactly, we can find their ratio from the
linear system:

C1

C2
=
−e−i

√
λ

ei
√
λ

= −e−2i
√
λ.

The unnormalized eigenfunction thus has the form

y(x) = −e−2i
√
λnei

√
λnx + e−i

√
λnx = −ei

√
λn(x−2) + e−i

√
λnx.

Since r(x) = −1, normalizing y only involves the modulus square of it:

||y||2 = −(−ei
√
λn(x−2) + e−i

√
λnx)(−e−i

√
λn(x−2) + ei

√
λnx)

= −2 + ei
√
λn(x−2)+i

√
λnx + e−i

√
λnx−i

√
λn(x−2)

= −2 + ei
√
λn(x−2) + e−i

√
λn(x−2)

= −2 + cos
(√

λn(x− 2)
)
.

The normalizing condition requires

1 = −
ˆ 1

0

2− cos
(√

λn(x− 2)
)
dx.
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Integrating in Mathematica and normalizing gives the form for an eigen-
function:

yn(x, λn) =

√
λn

sin
√
λn(1− 2 cos

√
λn) + 2

√
λn

(
ei
√
λn(x−2) − e−i

√
λnx
)

Mathematica code:

Simplify [(1 + I*L) (Cos[L] - I*Sin[L]) - (1 - I*L) (Cos[L] +
I*Sin[L])]
2 I (L Cos[L] - Sin[L])

t[L_] := Tan[L] - L; val = 0.000000000001;
FindRoot[val == t[L], {L, 4}]
{L -> 4.49341}
Show[Plot[Tan[L], {L, 0, 10}], Plot[L, {L, 0, 10}]]

Simplify[Integrate [2 - Cos[A*(x - 2)], {x, 0, 1}]]
2 + ((1 - 2 Cos[A]) Sin[A])/A
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2. y′′ + λy = 0 y′(0) = 0, y(1) + y′(1) = 0.

Solution. First, we identify:

p(x) = 1, q(x) = 0, r(x) = 1.

a1 = 0 b1 = 1, a2 = 1, b2 = 1.

The associated S-L problem is
ODE: L[y](x) = y′′ = −λy 0 < x < 1

BC1: y′(0) = 0

BC2: y(1) + y′(1) = 0

The general solution to the ODE has the form

y(x) =
(
y1 y2

)(C1

C2

)
=
(
cos
√
λx sin

√
λx
)(C1

C2

)
where C1 and C2 are determined by the BCs, which give rise to the system(

0
0

)
= A

(
C1

C2

)
=

(
0

√
λ

cos
√
λ−
√
λ sin

√
λ sin

√
λ+
√
λ cos

√
λ

)(
C1

C2

)
To get non-trivial solutions, we require det(A) = 0, i.e.,

0 = −
√
λ(cos

√
λ−
√
λ sin

√
λ).

This means

tan
√
λ =

1√
λ

Numerically approximate in Mathematica gives

λ1 ≈ −−−
λn ≈ n n large

NEEDS SOME CORRECTION HERE
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Exercise. 2. In lecture, we saw that the linear operator

L[u] = −(p(x)u′(x))′ + q(x)u(x)

had the property that

ˆ 1

0

(vL[u]− uL[v]) dx = 0

whenever u and v are twice-continuously differentiable functions which satisfy
the boundary conditions of the Strum-Liouville Problem.

In class, we assumed b1 and b2 were non-zero. Here, show that the result
remains valid provided b1 or b2 is zero. Do u and v have to be eigenfunctions of
the S-L problem for the property above to hold? Or, is it simply required that
u and v satisfied the boundary conditions? Assume the identity:

ˆ 1

0

(fL[g]− gL[f ]) dx = p(x)(g′(x)f(x)− f ′(x)g(x))

∣∣∣∣1
0

which is true for all twice-continuously differentiable functions on the interval
[0, 1].

Solution. Assume that

ˆ 1

0

(fL[g]− gL[f ]) dx = p(x)(g′(x)f(x)− f ′(x)g(x))

∣∣∣∣1
0

,

and (without loss of generality) b1 = 0, b2 6= 0, i.e., a1φ(0) = 0 and a2φ(1) +
b2φ
′(1) = 0 for φ = v or u. If this implies φ(1) = φ(0) = 0, then we have

ˆ 1

0

(vL[u]− uL[v]) dx = p(x)(u′(x)v(x)− v′(x)u(x))

∣∣∣∣1
0

= p(1)(u′(1)v(1)− v′(1)u(1))− p(0)(u′(0)v(0)− v′(0)u(0))

= p(1)(u′(1)v(1)− v′(1)u(1))

= p(1)

(
−b2u(1)

a2
v(1)− −b2v(1)

a2
u(1)

)
= 0.

If a1, a2 = 0 then there are no boundary conditions, so we reject this possibility.

Observe that the identity holds regardless of whether u and v are eigen-
functions of the S-L problem. It is simply required that u and v satisfied the
boundary conditions.
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Exercise. 3. Consider a second-order linear differential operator

M [u](x) = κ2u
′′(x) + κ1(x)u′(x) + κ0u(x)

and linear homogeneous boundary conditions{
BC1: a1u(0) + b1u

′(0) = 0

BC2: a2u(1) + b2u
′(1) = 0

where (a1, b1) 6= (0, 0) and (a2, b2) 6= (0, 0); we take both the operator M and
the BCs to be defined for all twice-continuously differentiable functions u on
[0, 1]. We say that the operator M [u], when restricted to the BCs is formally
self-adjoint provided ˆ 1

0

uL[v]− vL[u] dx = 0

whenever u and v satisfy the BCs.

Are the following operators restricted to the given boundary conditions for-
mally self-adjoint? Justify your answer.

1. M [u] = u′′ + u′ + 2u, u(0) = u(1) = 0.

Solution. M [u] is self-adjoint if
ˆ 1

0

(vM [u]− uM [v]) dx = 0.

We first expand and simplify the integrand.

vM [u]− uM [v] = v(u′′ + u′ + 2u)− u(v′′ + v′ + 2v)

= (vu′′ − uv′′) + (vu′ − uv′).

Integrating both sides givesˆ 1

0

(vM [u]− uM [v]) dx =

ˆ 1

0

(vu′′ − uv′′) dx+

ˆ 1

0

(vu′ − uv′) dx.

Consider the first term.ˆ 1

0

(vu′′ − uv′′) dx =

ˆ 1

0

vu′′ dx−
ˆ 1

0

uv′′ dx

= vu′
∣∣∣∣1
0

−
ˆ 1

0

v′u′ dx− uv′
∣∣∣∣1
0

+

ˆ 1

0

u′v′ dx

= vu′ − uv′
∣∣∣∣1
0

= (v(1)u′(1)− u(1)v′(1))− (v(0)u′(0)− u(0)v′(0))

= 0.



140 CHAPTER 20. PROBLEMS AND SOLUTIONS

We can attempt to simplify the second term, in a similar fashion:

ˆ 1

0

(vu′ − uv′) dx =

ˆ 1

0

vu′ dx−
ˆ 1

0

uv′ dx

= vu

∣∣∣∣1
0

−
ˆ 1

0

uv′ dx−
ˆ 1

0

uv′ dx

= v(1)u(1)− v(0)u(0)−
ˆ 1

0

uv′ dx−
ˆ 1

0

uv′ dx

= −2

ˆ 1

0

uv′ dx

6= 0.

Therefore M [u] is not self-adjoint.
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2. M [u] = (1 + x2)u′′ + 2xu′ + u, u′(0) = u(1) + 2u′(1) = 0.

Solution. M [u] is self-adjoint if

ˆ 1

0

(vM [u]− uM [v]) dx = 0.

We first expand and simplify the integrand.

vM [u]− uM [v] = v((1 + x2)u′′ + 2xu′ + u)− u((1 + x2)v′′ + 2xv′ + v)

= (1 + x2)(vu′′ − uv′′) + 2x(vu′ − uv′).

Integrating both sides gives
ˆ 1

0

(vM [u]− uM [v]) dx =

ˆ 1

0

(1 + x2)(vu′′ − uv′′) dx+

ˆ 1

0

2x(vu′ − uv′) dx.

=

ˆ 1

0

vu′′ − uv′′ dx+

ˆ 1

0

x2(vu′′ − uv′′) dx

+

ˆ 1

0

2x(vu′ − uv′) dx.

Consider the first term:ˆ 1

0

(vu′′ − uv′′) dx =

ˆ 1

0

(vu′′ − uv′′) dx

= vu′
∣∣∣∣1
0

− uv′
∣∣∣∣1
0

= v(1)u′(1)− v(0)u′(0)− u(1)v′(1) + u(0)v′(0)

= v(1)u′(1)− u(1)v′(1)

= +2v′(1)
1

2
u(1)− u(1)v′(1)

= 0.

Consider the second term:ˆ 1

0

x2(vu′′ − uv′′) dx =

ˆ 1

0

x2 [(vu′)′ − u′v′ − (uv′)′ + u′v′] dx

=

ˆ 1

0

x2 [(vu′)′ − (uv′)′] dx

= x2(vu′)

∣∣∣∣1
0

−
ˆ 1

0

2x(vu′) dx− x2(uv′)

∣∣∣∣1
0

+

ˆ 1

0

2x(uv′) dx

= v(1)u′(1)− u(1)v′(1)−
ˆ 1

0

2x(vu′ − uv′) dx

= +2v′(1)
1

2
u(1)− u(1)v′(1)−

ˆ 1

0

2x(vu′ − uv′) dx.
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Putting everything together, we find a cancellation:

ˆ 1

0

(vM [u]− uM [v]) dx = −
ˆ 1

0

2x(vu′ − uv′) dx+

ˆ 1

0

2x(vu′ − uv′) dx

= 0.

Therefore, M [u] is self-adjoint.



20.3. PROBLEM SET 3 143

3. M [u] = (1 + x2)u′′ + 2xu′ + u, u(0)− u′(1) = u′(0) + 2u(1) = 0.

Solution. M [u] is self-adjoint if

ˆ 1

0

(vM [u]− uM [v]) dx = 0.

We first expand and simplify the integrand

vM [u]− uM [v] = v((1 + x2)u′′ + 2xu′ + u)− u((1 + x2)v′′ + 2xv′ + v)

= (1 + x2)(vu′′ − uv′′) + 2x(vu′ − uv′).

Integrating both sides gives

ˆ 1

0

(vM [u]− uM [v]) dx =

ˆ 1

0

(1 + x2)(vu′′ − uv′′) dx+

ˆ 1

0

2x(vu′ − uv′) dx.

=

ˆ 1

0

vu′′ − uv′′ dx+

ˆ 1

0

x2(vu′′ − uv′′) dx

+

ˆ 1

0

2x(vu′ − uv′) dx.

Consider the first term:

ˆ 1

0

(vu′′ − uv′′) dx =

ˆ 1

0

(vu′′ − uv′′) dx

= vu′
∣∣∣∣1
0

− uv′
∣∣∣∣1
0

= v(1)u′(1)− v(0)u′(0)− u(1)v′(1) + u(0)v′(0).

Consider the second term:

ˆ 1

0

x2(vu′′ − uv′′) dx =

ˆ 1

0

x2 [(vu′)′ − u′v′ − (uv′)′ + u′v′] dx

=

ˆ 1

0

x2 [(vu′)′ − (uv′)′] dx

= x2(vu′)

∣∣∣∣1
0

−
ˆ 1

0

2x(vu′) dx− x2(uv′)

∣∣∣∣1
0

+

ˆ 1

0

2x(uv′) dx

= v(1)u′(1)− u(1)v′(1)− 2x

ˆ 1

0

(vu′ − uv′) dx.
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Putting everything together, we find a cancellation:

ˆ 1

0

(vM [u]− uM [v]) dx = −
ˆ 1

0

2x(vu′ − uv′) dx+

ˆ 1

0

2x(vu′ − uv′) dx

+ 2v(1)u′(1)− v(0)u′(0)− 2u(1)v′(1) + u(0)v′(0)

= 2v(1)u′(1)− v(0)u′(0)− 2u(1)v′(1) + u(0)v′(0)

= −v′(0)u(0)− v(0)u′(0) + u′(0)v(0) + u(0)v′(0)

= 0.

Therefore, M [u] is self-adjoint.
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Exercise. 4. Problem 3, Lesson 8
Solve

PDE: ut = uxx − u 0 < x < 1, 0 < t <∞

BCs:

{
u(0, t) = 0

u(1, t) = 0
0 < t <∞

IC: u(x, 0) = sin(πx) 0 ≤ x ≤ 1.

directly by separation of variables without making any preliminary transfor-
mation. Does your solution agree with the solution you would obtain if the
transformation

u(x, t) = e−tw(x, t)

were made in advance?

Solution. Let

u(x, t) = X(x)T (t).

The PDE tells us that

TtX = XxxT −XT,

i.e.,

Tt
T

=
Xxx

X
− 1 = −λ2 − 1.

where λ is a constant. So,{
T (t) = e−(λ2+1)t

X(x) = A cosλx+B sinλx

Applying the BCs, we get

A = 0

λ = nπ, n = 0, 1, 2, 3, . . .

So the general solution (to the homogeneous case)is

u(x, t) =

∞∑
n=0

e−((nπ)2+1)tBn sin(nπx),

where Bn can be solved by applying the IC:
ˆ 1

0

sin(πx) sin(mπx) dx =

ˆ 1

0

∞∑
n=0

Bn sin(nπx) sin(mπx) dx

=
1

2
Bnδ

n
m

=
1

2
Bm.
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This gives

Bn = 2

ˆ 1

0

sin(πx) sin(nπx) dx = δ1
n.

So the solution to the homogeneous PDE is

u(x, t) = e−(π2+1)t sin(πx) .

Now, if we apply the transformation u(x, t) = e−tw(x, t) in advance, then the
extra factor of e−t will be taken care of in advance, and the IBVP will be
transformed into one with both homogeneous PDE and BCs that involves w(x, t)
rather than v(x, t). First, we can look at how the PDE changes:

ut → −e−tw(x, t) + e−twt(x, t)

uxx − u→ e−twxx(x, t)− e−tw(x, t).

For the original PDE to hold, we require that

wt = wxx.

Since the BCs and ICs are time-independent, the transformation simply allows
us to replace v by w. So, the new IBVP is

PDE: wt = wxx 0 < x < 1, 0 < t <∞

BCs:

{
w(0, t) = 0

w(1, t) = 0
0 < t <∞

IC: w(x, 0) = sin(πx) 0 ≤ x ≤ 1.

This is exactly how we treated u(x, t) before correcting it to make it solve
the PDE. So, our solution agrees with the solution we would obtain if the
transformation u(x, t) = e−tw(x, t) were made in advance.
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20.4 Problem set 4

Exercise. 1. Problem 1, Lesson 9, Farlow

u(x, t) = e−(πα)2t sin(πx) +
1

(3πα)2

[
1− e−(3πα)2t

]
sin(3πx).

Solution. We can plot u(x, t) for a few time points:

U[t_ , x_] :=
E^(-Pi^2 t)*Sin[Pi*x] +
1/(3*Pi )^2*(1 - E^(-(3 Pi)^2 t))* Sin[3 Pi*t];

Show[Plot[U[0, x], {x, 0, 1}], Plot[U[0.05, x], {x, 0, 1}],
Plot[U[0.01, x], {x, 0, 1}], Plot[U[0.08, x], {x, 0, 1}],
AxesLabel -> {x, u}]

The solution makes sense, because the IBVP basically describes a rod with
fixed zero temperature at the ends and an initial temperature distribution of
sin(πx) being subjected to some heat source.
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Exercise. 2. Problem 2, Lesson 9, Farlow
Solve the IBVP:

PDE: ut = uxx + sin(πx) + sin(2πx), 0 < x < 1 0 < t <∞

BCs:

{
u(0, t) = 0

u(1, t) = 0
0 < t <∞

IC: u(x, 0) = 0 0 ≤ x ≤ 1.

Solution. We use the eigenfunction expansion method to solve this problem.
The first step is finding the eigenvectors by converting the homogeneous prob-
lem:

PDE: ut = uxx, 0 < x < 1 0 < t <∞

BCs:

{
u(0, t) = 0

u(1, t) = 0
0 < t∞

into the associated S-L problem

PDE: Xxx = −λ2X, 0 < x < 1

BCs:

{
X(0) = 0

X(1) = 0
,

to which the solutions (or the eigenvectors) have the form:

Xn(x) = sin(nπx).

Next, we want to write f(x, t) = sin(πx)+sin(2πx) in terms of the eigenvec-
tors. Observe that we don’t need Fourier Sine series here since f(x, t) is already
given to us as a sum of two eigenvectors:

f(t, x) = sin(πx) + sin(2πx) =

∞∑
n=1

fn(t)Xn(x) = f1(t)×X1(x) + f2(t)×X2(x).

This means

f1(t) = f2(t) = 1

fn(t) = 0, n > 2.

Subject

u(t, x) =

∞∑
n=1

Tn(t)Xn(x)

to the IBVP, where

f(t, x) =

∞∑
n=1

fn(t)Xn(x) =

∞∑
n=1

fn(t) sin(nπx)
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gives

Ṫn(t) + (nπ)2Tn(t) = fn(t),

to which the solution is of the form

Tn(t) = e−(nπ)2t

ˆ t

0

fn(s)e(nπ)2s ds+ Tn(0)e−(nπ)2t.

Since we only have non-zero f1(t) = f2(t) = 1,

T1(t) = e−(π)2t

ˆ t

0

e(π)2s ds+ T1(0)e−(π)2t

= e−(π)2t

(
−1 + eπ

2t

π2
+ T1(0)

)
,

and

T2(t) = e−(2π)2t

ˆ t

0

e(2π)2s ds+ T2(0)e−(2π)2t

= e−(2π)2t

(
−1 + e4π2t

4π2
+ T2(0)

)
,

and

Tn(t) = Tn(0)e−(nπ)2t, n > 2.

Next, note that because

u(0, x) = u0(x) = 0 =

∞∑
n=1

Tn(0) sin(nπx),

we have

Tn(0) = 0,

which means all Tn(t) = 0 for n > 2 are zero. Therefore,

u(t, x) =

∞∑
n=1

(
e−(nπ)2t

ˆ t

0

fn(s)e(nπ)2s ds

)
sin(nπx)

= e−(π)2t

(
−1 + eπ

2t

π2

)
sin(πx) + e−(2π)2t

(
−1 + e4π2t

4π2

)
sin(2πx)

=
1

π2

(
1− e−π

2t
)

sin(πx) +
1

(2π)2
e−(2π)2t

(
1− e−(2π)2t

)
sin(2πx).
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Exercise. 4. Problem 5, Lesson 9, Farlow

Solve the IBVP:

PDE: ut = uxx + sin(πx), 0 < x < 1 0 < t <∞

BCs:

{
u(0, t) = 0

u(1, t) = 0
0 < t <∞

IC: u(x, 0) = 1 0 ≤ x ≤ 1.

Solution. We use the eigenfunction expansion method to solve this problem.
The first step is finding the eigenvectors by converting the homogeneous prob-
lem:

PDE: ut = uxx, 0 < x < 1 0 < t <∞

BCs:

{
u(0, t) = 0

u(1, t) = 0
0 < t∞

into the associated S-L problem

PDE: Xxx = −λ2X, 0 < x < 1

BCs:

{
X(0) = 0

X(1) = 0
,

to which the solutions (or the eigenvectors) have the form:

Xn(x) = sin(nπx).

Next, we want to write f(x, t) = sin(πx) in terms of the eigenvectors. Ob-
serve that we don’t need Fourier Sine series here since f(x, t) is already given
to us as a sum of two eigenvectors:

f(t, x) = sin(πx) =

∞∑
n=1

fn(t)Xn(x) = f1(t)×X1(x).

This means

fn(t) = δ1
n.

Subject

u(t, x) =

∞∑
n=1

Tn(t)Xn(x)

to the IBVP, where

f(t, x) =

∞∑
n=1

fn(t)Xn(x) =

∞∑
n=1

fn(t) sin(nπx)
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gives

Ṫn(t) + (nπ)2Tn(t) = fn(t),

to which the solution is of the form

Tn(t) = e−(nπ)2t

ˆ t

0

fn(s)e(nπ)2s ds+ Tn(0)e−(nπ)2t.

Since we only have non-zero f1(t) = 1,

T1(t) = e−(π)2t

ˆ t

0

e(π)2s ds+ T1(0)e−(π)2t

= e−(π)2t

(
−1 + eπ

2t

π2
+ T1(0)

)
,

and

Tn(t) = Tn(0)e−(nπ)2t, n > 2.

Next, note that because

u(0, x) = u0(x) = 1 =

∞∑
n=1

Tn(0) sin(nπx),

we have

Tn(0) = 2

ˆ 1

0

sin(nπx) dx =

{
4/(nπ), n odd

0, n even.

Therefore,

u(t, x) =

∞∑
n=1

(
e−(nπ)2t

ˆ t

0

fn(s)e(nπ)2s ds

)
sin(nπx)

= e−(π)2t

(
−1 + eπ

2t

π2
+

4

π

)
sin(πx) +

∞∑
n=2

4

nπ
e−(nπ)2t sin(nπx), n odd

=

(
1− eπ2t

π2
+

4

π
e−π

2t

)
sin(πx) +

∞∑
j=0

4

(2j + 1)π
e−(2j+1)2π2t sin [(2j + 1)πx]
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Exercise. 3. Problem 5, Lesson 9, Farlow

Solve:

PDE: ut = uxx 0 < x < 1

BCs:

{
u(0, t) = 0

u(1, t) = cos t
0 < t <∞

IC: u(x, 0) = x 0 ≤ x ≤ 1

by

1. Transforming into one with zero BCs.

2. Solving the resulting problem by expanding it in terms of eigenfunctions.

Solution.

1. Transforming the IBVP into one with zero BCs.

To do this, we consider the steady-state where ut = 0, which gives uxx = 0,
i.e., S(x, t) = Cx+D. Applying the BCs, we get

D = 0

C = cos t.

So, the steady-state solution is

S(x, t) = x cos t,

and the full solution is

u(x, t) = U(x, t) + x cos t.

Applying the BCs to this u to obtain the BCs for U :

U(0, t) = u(0, t)− S(0, t) = 0− 0 = 0

U(1, t) = u(1, t)− S(1, t) = cos t− cos t = 0.

And the initial condition becomes

U(x, 0) = u(x, 0)− S(x, 0) = x− x = 0.

We have transformed the BCs into one with zeros. But the PDE has
turned inhomogeneous:

Ut = ut − St = uxx + x sin t = Uxx + x sin t.
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The new IBVP is then

PDE: Ut = Uxx + x sin t 0 < x < 1

BCs:

{
U(0, t) = 0

U(1, t) = 0
0 < t <∞

IC: U(x, 0) = 0 0 ≤ x ≤ 1

2. Now we consider eigenfunction expansion. The eigenfunction to the ODE.
To do this, we consider the homogeneous problem, and convert it into an
associated S-L problem to get the ODE:

PDE: Xxx = −λ2X 0 < x < 1

BCs:

{
X(0) = 0

X(1) = 0

to which the eigenfunctions have the form

Xn(x) = sin(nπx).

Now we want to write x sin t in terms of these eigenfunctions:

x sin t =

∞∑
n=1

fn(t)Xn(x) =

∞∑
n=1

fn(t) sin(nπx).

So integrating in Mathematica gives

fn(t) = 2

ˆ 1

0

x sin t sin(nπx) dx

=

{
(−1)n+1 2 sin t

nπ , n ≥ 1

0, n = 0.

Now, we also have

Ut(x, t) =

∞∑
n=1

Ṫn(t) sin(nπx)

Uxx(x, t) =

∞∑
n=1

−(nπ)2Tn(t) sin(nπx).

Since Ut = Uxx +
∑∞
n=1 fn(t) sin(nπx), we have the following ODE:

Ṫn(t) + (nπ)2Tn(t) = (−1)n+1 2 sin t

nπ
,
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whose solution is

Tn(t) = e−(nπ)2t

ˆ τ

0

(−1)n+1 2 sin τ

nπ
e(nπ)2τ dτ + Tn(0)e−(nπ)2t

= (−1)n+1 2

nπ

ˆ τ

0

e−(nπ)2(t−τ) sin τ dτ.

Therefore, the full solution, u(x, t) = S(x, t) + U(x, t), is

u(x, t) = x cos t+

∞∑
n=1

sin(nπx)

(
(−1)n+1 2

nπ

ˆ τ

0

e−(nπ)2(t−τ) sin τ dτ

)

Mathematica code:

F[n_] := Simplify[Integrate[x*Sin[n*Pi*x], {x, 0, 1}]]

In [12]:= Table[F[n], {n, 0, 10}]

Out [12]= {0, 1/\[Pi], -(1/(2 \[Pi])), 1/(3 \[Pi]), -(1/(4 \[Pi])), 1/(
5 \[Pi]), -(1/(6 \[Pi])), 1/(7 \[Pi]), -(1/(8 \[Pi])), 1/(
9 \[Pi]), -(1/(10 \[Pi]))}
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Exercise. 5. Problem 1, Lesson 10, Farlow Prove the identities

1. Fs[f ′] = −ωFc[f ]

2. Fs[f ′′] = 2
πωf(0)− ω2Fs[f ]

3. Fc[f ′] = −2
π f(0) + ωFs[f ]

4. Fc[f ′′] = −2
π f
′(0)− ω2Fc[f ].

What assumptions do you need to make about the function f?

Solution. We have to assume that f has to be at least twice piecewise differ-
entiable, and that f → 0 as t→∞.

1. The first identity can be shown by integration by parts

Fs[f ′] =
2

π

ˆ ∞
0

f ′ sin(ωt) dt

=
2

π

(
f sin(ωt)

∣∣∣∣∞
0

−
ˆ 1

0

ωf cos(ωt) dt

)
=

2

π
f sin(ωt)

∣∣∣∣∞
0

− ωFc[f ]

= −ωFc[f ].

2. We use the first identity

Fs[f ′′] = −ωFc[f ′]

= −ω 2

π

ˆ ∞
0

f ′ cos(ωt) dt

= −2ω

π

(
lim
t→∞

f cos(ωt)

∣∣∣∣t
0

+ ω

ˆ ∞
0

f ′′ sin(ωt) dt

)

=
2

π
ωf(0)− 2ω2

π

ˆ ∞
0

f ′′ sin(ωt) dt

=
2

π
ωf(0)− ω2Fs[f ].

3. We use the first and second identities:

Fc[f ′] = − 1

ω
Fs[f ′′]

= − 1

ω

(
2

π
ωf(0)− ω2Fs[f ]

)
= − 2

π
f(0) + ωFs[f ].
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4. We use the first and third identities:

Fc[f ′′] = − 2

π
f ′(0) + ωFs[f ′]

= − 2

π
f ′(0) + ω (−ωFc[f ])

=
−2

π
f ′(0)− ω2Fc[f ].



20.5. PROBLEM SET 5 157

20.5 Problem set 5

Exercise. 1. Problem 1, Lesson 11, Farlow.

What is the Fourier series expansion of the square sine wave

f(x) =

{
−1 − 1 < x < 0

1 0 ≤ x < 1

f(x+ 2) = f(x) (periodic condition)

Graph the first 2,3,4 terms of the series to see how it is converging to f(x). Also
graph the frequency spectrum of f(x).

Solution. 1. f(x) can be represented by

f(x) =
a0

2
+

∞∑
n=1

[an cos(nπx) + bn sin(nπx)] ,

where

an =

ˆ 1

−1

f(x) cos(nπx) dx

=

ˆ 1

0

cos(nπx) dx+

ˆ 0

−1

(−1) cos(nπx) dx

= 0.

and

bn =

ˆ 1

0

sin(nπx) dx+

ˆ 0

−1

(−1) sin(nπx) dx

=
2− 2 cos(πn)

πn

=

{
0, n even
4
nπ , n odd

.

So, the Fourier series expansion of f(x) is

f(x) =

∞∑
j=0

4

(2j + 1)π
sin ((2j + 1)πx) .

Graph of the first 2,3,4 terms of the series:

ffs[x_ , nmax_] := Sum [4/Pi/(2 n + 1)*Sin [(2 n + 1) Pi*x], {n, 0, nmax}]

pn[n_] := Plot[ffs[x, n], {x, -1, 1}]

Show[p, pn[2], pn[3], pn[4], PlotRange -> {-1.3, 1.3}]
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Frequency spectrum of f(x):

data := Table[{n, (2 - 2 Cos[Pi*n])/(n*Pi)}, {n, 0.000000000001 , 10}]

Show[ListPlot[data], AxesLabel -> {n, c}]
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Exercise. 2. Problem 2, Lesson 11, Farlow.

Show that if we differentiate the Fourier series expansion of the sawtooth
wave term by term, we arrive at an infinite series that clearly does not represent
the derivative of the sawtooth curve.

Solution. 2. The Fourier series expansion of the sawtooth wave is

f(x) =
2L

π

[
sin(πx/L)− 1

2
sin(2πx/L) +

1

3
sin(3πx/L)− . . .

]
.

Differentiating f(x) with respect to x gives

df(x)

dx
=

2L

π

[
π

L
cos(πx/L)− 1

2

2π

L
cos(2πx/L) +

1

3

3π

L
cos(3πx/L)− . . .

]
= 2 [cos(πx/L)− cos(2πx/L) + cos(3πx/L)− . . .] ,

which looks like (taking L = 1)

ffs2[x_ , nmax_] := 2*Sum[Cos[n*Pi*x]*( -1)^(n + 1), {n, 1, nmax}]
pn2[n_] := Plot[ffs2[x, n], {x, -1, 1}]
Show[pn2[15], PlotRange -> {10, -5}]

whereas the derivative of the sawtooth curve given in the book:

is given by

f ′(x) = 1, −L < x < L

f ′(x+ 2L) = f(x), (periodic condition)

whose Fourier series expansion is just a constant.
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Exercise. 3. Problem 3, Lesson 12, Farlow.

Solve the IVP:

PDE : ut = α2uxx −∞ < x <∞

IC : u(x, 0) = e−x
2

−∞ < x <∞

by using the Fourier transform.

Solution. 3. We first transform the problem:

Fx[ut](ξ) = α2Fx[uxx](ξ)

Fx[u(x, 0)](ξ) = Fx
[
e−x

2
]

(ξ).

Let U(ξ, t) = Fx[u(x, t)](ξ). Since we are working with the Fourier transform
in x, we can take the t−derivative outside of the FT to get an ODE:

Fx[ut(x, t)](ξ) =
dFx[u(x, t)](ξ)

dt
= α2Fx[uxx](ξ) =

dU(ξ, t)

dt
= −α2ξ2U(ξ, t)

FT the IC gives:

U(ξ, 0) = Fx
[
e−x

2
]

(ξ).

Solving the ODE gives:

U(ξ, t) = U(ξ, 0)e−α
2ξ2t.

Now, we take the inverse:

u(x, t) = F−1
x [U(ξ, t)]

= F−1
x

[
U(ξ, 0)e−α

2ξ2t
]

= F−1
x [U(ξ, 0)] ∗ F−1

x [eα
2ξ2t]

= u(x, 0) ∗ F−1
x [e−α

2ξ2t], convolution theorem

= e−x
2

∗ F−1
x [e−α

2ξ2t]

= e−x
2

∗
[

1√
2π

ˆ ∞
−∞

e−α
2ξ2teixξ dξ

]
.
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Change of variables: let s = −α
√
tξ, so that ds = −α

√
t, we have

u(x, t) = e−x
2

∗
[

1√
2π

1

α
√
t

ˆ ∞
−∞

e−s
2

e−ix(s/α
√
t) ds

]
= e−x

2

∗ 1

α
√
t

[
1√
2π

ˆ ∞
−∞

e−s
2

e−is(x/α
√
t) ds

]
= e−x

2

∗ 1

α
√
t
F [e−s

2

(
x

α
√
t

)
]

= e−x
2

∗ 1

α
√
t

1√
2
e−(x/α

√
t)2/22

= e−x
2

∗ 1

α
√

2t
e−x

2/4α2t

=
1√
2π

1

α
√

2t

ˆ ∞
−∞

e−y
2

e−(x−y)2/4α2t dy

=
1

2α
√
πt

ˆ ∞
−∞

e−y
2

e−(x−y)2/4α2t dy.

So the solution to the IVP is

u(x, t) =
1

2α
√
πt

ˆ ∞
−∞

e−y
2

e−(x−y)2/4α2t dy
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Exercise. 4. Problem 5, Lesson 12, Farlow.

Verify that the convolution of two functions f and g can be written as either

(f ∗ g)(x) =
1√
2π

ˆ ∞
−∞

f(x− ξ)g(ξ) dξ

or

(f ∗ g)(x) =
1√
2π

ˆ ∞
−∞

f(ξ)g(x− ξ) dξ.

Solution. 4. We can show the two expressions are equivalent by change of
variables. Let

(f ∗ g)(x) =
1√
2π

ˆ ∞
−∞

f(x− ξ)g(ξ) dξ

and y = x− ξ. Then ξ = x− y and dξ = −dy. So,

1√
2π

ˆ ∞
−∞

f(ξ)g(x− ξ) dξ =
1√
2π

ˆ −∞
+∞

−f(x− y)g(y) dy

=
1√
2π

ˆ ∞
−∞

f(x− y)g(y) dy

=
1√
2π

ˆ ∞
−∞

f(x− ξ)g(ξ) dξ,

where we just replace the dummy variable y with ξ. Therefore, the two expres-
sions are equivalent. This also shows that (f ∗ g)(x) = (g ∗ f)(x).
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Exercise. 5. Problem 2, Lesson 12, Farlow.

Verify that the Fourier and inverse Fourier transforms are linear transfor-
mations.

Solution. Let “nice” functions f(x) and g(x) and α, β ∈ C be given.

1. The Fourier transform is linear.

αF [f(x)](ξ) + βF [g(x)](ξ) = α
1√
2π

ˆ ∞
−∞

(f(x))e−ixξ dx+ β
1√
2π

ˆ ∞
−∞

(g(x))e−ixξ dx

=
1√
2π

ˆ ∞
−∞

(αf(x))e−ixξ dx+
1√
2π

ˆ ∞
−∞

(βg(x))e−ixξ dx

=
1√
2π

(ˆ ∞
−∞

(αf(x) + βg(x))e−ixξ dx

)
= F [αf + βg](ξ).

2. The Inverse Fourier transform is also linear.

αF−1[f(ξ)](x) + βF−1[g(ξ)](x) = α
1√
2π

ˆ ∞
−∞

f(ξ)eixξ dξ + β
1√
2π

ˆ ∞
−∞

g(ξ)eixξ dξ

=
1√
2π

ˆ ∞
−∞

αf(ξ)eixξ dξ +
1√
2π

ˆ ∞
−∞

βg(ξ)eixξ dξ

=
1√
2π

ˆ ∞
−∞

(αf(ξ) + βg(ξ))eixξ dξ

= F−1[αf(ξ) + βg(ξ)](x).
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Exercise. 6. In this exercise, you’ll derive the formula given as Item 3 in Table
12.1 in our textbook. The formula essentially says that the Fourier transform of
a Gaussian function is another Gaussian function. Precisely, this is the identity

F [e−x
2

](ξ) =
1√
2
e−(ξ/2)2

which holds for all ξ ∈ R. To this end, do the following:

1. Fix any x ∈ R and define, for t ∈ [0, 1],

f(t) =
1√
2π

ˆ ∞
−∞

e−(x+i(t/2)ξ)2 dx.

Compute f ′(t) for 0 < t < 1. Hint: You may differentiate right through
the integral sign. In our answer, it is useful to keep the entire term which
comes down from the chain rule together, i.e., keep your answer as a single
integral.

Solution. 6.1 We simply follow what the hint says:

df(t)

dt
=

d

dt

1√
2π

ˆ ∞
−∞

e−(x+i(t/2)ξ)2 dx

=
1√
2π

ˆ ∞
−∞

d

dt
e−(x+i(t/2)ξ)2 dx

=
1√
2π

ˆ ∞
−∞

d

dt
e−(x+i(t/2)ξ)2 dx

=
1√
2π

ˆ ∞
−∞
−
(
d

dt
(x+ i(t/2)ξ)2

)
e−(x+i(t/2)ξ)2 dx

=
1√
2π

ˆ ∞
−∞
−2(x+ i(t/2)ξ)

iξ

2
e−(x+i(t/2)ξ)2 dx

=
1√
2π

ˆ ∞
−∞
−iξ(x+ i(t/2)ξ)e−(x+i(t/2)ξ)2 dx.

2. By making a change of variables, x → y = x + i(t/2)ξ, use symmetry to
conclude that f ′(t) = 0 for all 0 < t < 1. Hint: In making the change of
variables, you can pretend that the imaginary unit i can be treated as a
real constant. Truthfully, this is not exactly correct but it works in this
case. The true change of variables makes use of Cauchy’s integral formula
from complex analysis, which you will learn if you take MA352 in the fall.

Solution. 6.2 By change of variables: y = x+ i(t/2)ξ, we have dy = dx,
so:

1√
2π

ˆ ∞
−∞
−iξ(x+ i(t/2)ξ)e−(x+i(t/2)ξ)2 dx = − iξ√

2π

ˆ ∞
−∞

ye−y
2

dy.

Since y is an odd function, e−y
2

is an even function, and that the domain
of integration is symmetric, f ′(t) = 0.
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3. Recalling the result from introductory calculus that f is identically con-
stant if and only if f ′ is identically zero, the previous step guarantees that
f(0) = f(1). Use this equation and the fact that

ˆ ∞
−∞

e−x
2

dx =
√
π

which we derived in class to deduce the formula on top.

Solution. 6.3 Let t = 0, then

f(0) =
1√
2π

ˆ ∞
−∞

e−x
2

dx =

√
π√
2π

=
1√
2
.

Since f ′(t) = 0 for any 0 < t < 1, we have f(1) = f(0), so,

f(0) = f(1) =
1√
2π

ˆ ∞
−∞

e−(x+i(1/2)ξ)2 dx =
1√
2
.

Hence,

F [e−x
2

](ξ) =
1√
2π

ˆ ∞
−∞

e−x
2

e−ixξ dx

=
1√
2π

ˆ ∞
−∞

e−(x2+2i(1/2)ξ+(iξ)2/22)e(iξ)2/22

dx

= e−ξ
2/4 1√

2π

ˆ ∞
−∞

e−(x+i(1/2)ξ)2 dx

= e−(ξ/2)2
(

1√
2π

ˆ ∞
−∞

e−(x+i(1/2)ξ)2 dx

)
= e−(ξ/2)2f(1)

=
1√
2
e−(ξ/2)2 .

This verifies the given identity.



166 CHAPTER 20. PROBLEMS AND SOLUTIONS

20.6 Problem set 6

Exercise. 1. Problem 3, Lesson 31, Farlow. What is Laplace’s equation
∇2u = 0 in polar coordinates if u depends only on r? What are the solutions of
this equation? These are the circularly symmetric potentials in two dimensions.

Solution. 1. In polar coordinates, with u = u(r),

∇2u = urr +
1

r
ur +

1

r2
uθθ

= urr +
1

r
ur.

So the Laplace’s equation becomes

urr +
1

r
ur = 0.

Let ur = x(r), then urr = xr and

xr +
1

r
x = 0.

Multiplying both sides by the integration factor exp
[´

1
r dr

]
= r, we get

(r · x(r))′ = 0,

which says r · x(r) is constant, i.e., x(r) ∝ 1
r , and thus

u(r) =

ˆ
x(r) dr =

ˆ
1

r
dr = C1 + C2 ln(r).

So the solution to the Laplace’s equation in the circularly symmetric case is

u(r) = C1 + C2 ln(r)
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Exercise. 2. Problem 4, Lesson 31, Farlow. What is Laplace’s equation
in spherical coordinates if the solution u depends only on r? Can you find the
solutions of this equation? These are the spherically symmetric potentials in
three dimensions.

Solution. 2. In spherical coordinates, with u = u(r),

∇2u = urr +
2

r
ur +

1

r2
uθθ +

cot θ

r2
uφ +

1

r2 sin2 φ
uθθ

= urr +
2

r
ur.

So the Laplace’s equation becomes

urr +
2

r
ur = 0.

Let ur = x(r), then urr = xr and

xr +
2

r
x = 0.

Multiplying both sides by the integration factor exp
[´

2
r dr

]
= r2, we get

(r2 · x(r))′ = 0,

which says r2 · x(r) is constant, i.e., x(r) ∝ 1
r2 , and thus

u(r) =

ˆ
x(r) dr =

ˆ
1

r2
dr = C1 + C2

1

r
.

So the solution to the Laplace’s equation in the circularly symmetric case is

u(r) = C1 + C2
1

r

Physically, this form resembles the gravitational and Coulomb’s potentials.
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Exercise. 3. Problem 1, Lesson 32, Farlow. Based on intuition, can you
find the solution to the Dirichlet problem

PDE: ∇2u = 0, 0 < r < 1

BC: u(1, θ) = sin θ, 0 ≤ θ < 2π?

Solution. 3. Thinking in terms of separation of variables, u(r, θ) = R(r)Θ(θ),
we can guess that Θ(θ) has to be periodic like sin(θ). Next, we can think of
R(r) as a function that scales Θ(θ) so that at r = 1, the maximum of u(r, θ) is
1 (at θ = π/2) and -1 at θ = 3π/2. So we can guess that u(r, θ) = r sin θ. It is
first clear that u(1, θ) = sin θ. If ∇2u = 0 then we are done:

∇2u = urr +
1

r
ur +

1

r2
uθθ = 0 +

1

r
sin θ − 1

r2
r sin θ = 0.

So the solution is indeed

u(r, θ) = r sin θ
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Exercise. 4. Problem 2, Lesson 32, Farlow. Does the following Neumann
problem

PDE: ∇2u = 0, 0 < r < 1

BC:
∂u

∂r
= sin2 θ

have a solution inside the circle?

Solution. 4. We check the compatibility condition for the Neumann problem:

ˆ
∂Ω

g ds =

ˆ 2π

0

sin2 θ dθ = 2π −
ˆ 2π

0

cos2 θ dθ = 2π −
ˆ 2π

0

sin2 θ dθ = π 6= 0.

Since the compatibility condition fails to hold, the Neumann problem fails to
have a solution. Of course, we could have told by noticing that sin2 θ is non-
negative for any θ ∈ [0, 2π).
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Exercise. 5. Problem 5, Lesson 32, Farlow. Now that you know the
physical interpretation of the Laplacian, what is the general nature of solutions
to the Helmholtz BVP

PDE: ∇2u = −λ2u, 0 < r < 1

BC: u(1, θ) = 0, 0 ≤ θ < 2π

Solution. 5. The Laplacian has the “avering property,” which says that if
∇2u < 0 then the value of u at a point is greater than the average of u among
its neighboring points, and if ∇2u > 0 then the value of u at a point is less than
the average of u among its neighboring points. For the PDE:

∇2u = −λ2u,

assuming that λ ∈ R, we know that if u at a point is positive, then ∇2u < 0,
which means the average value of u near that point is less than u, then the neigh-
boring points will have the tendency to “pull u down.” On the other hand, if u
is negative, then for the same reason the surround points will have the tendency
to “pull u up.” But we also have that u(1, θ) = 0 on the boundary, this means
this “oscillating” behavior is dampened and set to zero at the boundary.

So it makes sense that the solutions to this Helmholtz BVP are linear com-
binations of the Bessel functions each of which can look like
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Exercise. 6. Problem 2, Lesson 33, Farlow. What is the solution to the
interior Dirichlet problem

PDE : urr +
1

r
ur +

1

r2
uθθ = 0, 0 < r < 1

with the following BCs:

1. u(1, θ) = 1 + sin θ + 1
2 cos θ

2. u(1, θ) = 2

3. u(1, θ) = sin θ

4. u(1, θ) = sin 3θ

What do solutions look like? Do they satisfy Laplace’s equation?

Solution. 6. We know that the general solution to the interior Dirichlet prob-
lem looks like

u(r, θ) =

∞∑
n=0

rn [An cos(nπ) +B sin(nπ)]

where An, Bn are obtained from the sine and cosine series expansion of g(θ).

1. Here, A0 = 1, B0 = 0, B1 = 1, A1 = 1/2 are the only non-zero coefficients.
So, the solution is

u(r, θ) = 1 + r sin θ +
1

2
r cos θ.

We should check that this solution satisfies the Laplace’s equation:

∇2u = urr +
1

r
ur +

1

r2
uθθ

= 0 +
1

r

(
sin θ +

1

2
cos θ

)
+

1

r2

(
−r sin θ − 1

2
r cos θ

)
= 0.

2. Here, only A0 = 2 is a non-zero coefficient, so the solution is just

u(r, θ) = 2.

And of course this satisfies Laplace’s equation:

∇2u = urr +
1

r
ur +

1

r2
uθθ = 0.
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3. Here B1 = 1 is the only non-zero coefficient. So the solution is

u(r, θ) = r sin θ.

We check that this solution satisfies the Laplace’s equation:

∇2u = urr +
1

r
ur +

1

r2
uθθ

= 0 +
1

r
sin θ − 1

r2
r sin θ

= 0.

In fact, this is Problem 1, Lesson 32, Farlow where we guessed the solution.

4. Here B3 = 1 is the only non-zero coefficient. So the solution is

u(r, θ) = r3 sin 3θ.

We should check that this satisfies the Laplace’s equation:

∇2u = urr +
1

r
ur +

1

r2
uθθ

= 6r sin 3θ +
1

r
(3r2) sin 3θ +

1

r2
r3(−9) sin 3θ

= (6 + 3− 9)r sin 3θ

= 0.
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Exercise. 7. Problem 5, Lesson 33, Farlow. Solve

PDE: ∇2u = 0, 0 < r < 1

BC: u(1, θ) =

{
sin θ, 0 ≤ θ < π

0, π ≤ θ < 2π

Roughly, what does the solution look like?

Solution. 7. We know that the general solution to the interior Dirichlet prob-
lem looks like

u(r, θ) =
∞∑
n=0

rn [An cosnθ +Bn sinnθ] ,

where

A0 =
1

2π

ˆ 2π

0

g(φ) dφ =
1

2π

ˆ π

0

sinφdφ =
1

π
.

Next we evaluate coefficients An at n 6= 0:

An =
1

π

ˆ 2π

0

cos(nφ)g(φ) dφ

=
1

π

ˆ π

0

cos(nφ) sinφdφ

=
1

2π

ˆ π

0

sin(1 + n)φ+ sin(1− n)φdφ

=
1

2π

(
1− cos(n+ 1)π

1 + n
+

1− cos(1− n)π

1− n

)
if n 6= 1, = 0 if n = 1

=
1

2π

(
1− cos(n+ 1)π

1 + n
+

1− cos(n− 1)π

1− n

)
=

1

2π

(
1− cos(n+ 1)π

1 + n
+

1− cos(n+ 1)π

1− n

)
=

1

2π

(
2− 2 cos(n+ 1)π

1− n2

)
=

1− cos(n+ 1)π

1− n2

=
1 + cosnπ

π(1− n2)

=

{
0, n odd

2
π(1−n2) , n even
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Finally, we evaluate coefficients Bn at n ≤ 0:

Bn =
1

π

ˆ 2π

0

sin(nφ)g(φ) dφ

=
1

π

ˆ π

0

sin(nφ) sinφdφ

=
1

2π

ˆ π

0

cos(n− 1)φ− cos(n+ 1)φdφ

=
1

2π

(
sin(n− 1)π

n− 1
− sin(n+ 1)π

n+ 1

)
if n 6= ±1, = ±1/2 if n = ±1

=
1

2π

(
− sinnπ

n− 1
+

sinnπ

n+ 1

)
= − sinnπ

π(n2 − 1)

=

{
1/2, n = 1

0, otherwise

So, putting everything together, the general solution is

u(r, θ) =
1

2
r sin θ +

2

π

1

2
+

∞∑
j=1

r2j

(1− (2j)2)
cos(2jθ)


We can expand this to see a few terms...

u(r, θ) =
1

2
r sin θ +

2

π

(
1

2
− r2

3
cos 2θ − r4

15
cos 4θ − . . .

)
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Exercise. 8. Problem 8, Lesson 33, Farlow. What does the Poisson kernel
look like as a function of aα : 0 ≤ α < 2π for r = 3R/4, θ = π/2? In other
words, draw the graph of the Poisson kernel.

Solution. 8. The Poisson kernel is given by

P =
R2 − r2

R2 − 2rR cos(θ − α) + r2
.

At θ = π/2, r = 3R/4, we have

P =
R2 − (3R/4)2

R2 − 2(3R/4)R cos(π/2− α) + (3R/4)2

=
7/16

1− (3/2) sinα+ 9/16

=
7

25− 24 sinα
.

The graph:
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Exercise. 9. Problem 8, Lesson 33, Farlow. Verify this: We can solve the
BVP (nonhomogeneous BC)

PDE: ∇2u = 0 inside D

BC: u = f on the boundary of D

by

1. Finding any function V that satisfies the BC: V = f on the boundary of
D.

2. Solving the new BVP:

PDE: ∇2W = ∇2V inside D

BC: W = 0 on the boundary of D

3. Observing that u = V −W is the solution to our problem.

In other words, we can transform the nonhomogeneity from the BC to the PDE.

Solution. 9. For V = f on the boundary of D, we have V − u = 0 on the
boundary of D. Call this W , then W = 0 on the boundary of D. Take the
Laplacian of V − u inside D, and use the linearity of this operator to get

∇2(V − u) = ∇2V −∇2u = ∇2V = 0 = ∇2W.

Thus, we indeed end up with a new BVP with homogeneous BC:

PDE: ∇2W = ∇2V inside D

BC: W = 0 on the boundary of D
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20.7 Problem set 7

Exercise. 1. Problem 1, Lesson 34 Solve the Dirichlet problem

PDE: ∇2u = 0 1 < r < 2

BCs:

{
u(1, θ) = cos θ

u(2, θ) = sin θ

Solution. 1. We know that solutions have the form:

u(r, θ) =

∞∑
n=0

anr
n cos(nθ) + bnr

n sin(nθ)b0 lnn +

+

∞∑
n=1

αnr
−n cos(nθ) + βnr

−n sin(nθ).

Solve for the n = 0 cases:

1

2π

ˆ 2π

0

cos θ dθ = 0 = a0 + b0 ln(1) = a0

1

2π

ˆ 2π

0

sin θ dθ = 0 = a0 + b0 ln(2) = b0 ln(2),

which says,

a0 = 0

b0 = 0.

Then we solve for an, αn with n 6= 0:

1

π

ˆ 2π

0

cos(θ) cos(nθ) dθ = anR
n
1 + αnR

−n
1 = an + αn

1

π

ˆ 2π

0

sin(θ) cos(nθ) dθ = anR
n
2 + αnR

−n
2 = an2n + αn2−n.

If n = 1 then

a1 + α1 = 1

2a1 +
1

2
α1 = 0

then

a1 = −1

3

α1 =
4

3
.
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If n 6= 1, then

an + αn = 0

2nan +
1

2n
αn = 0

then

an = 0

αn = 0.

Then we solve for bn, βn with n 6= 0:

1

π

ˆ 2π

0

cos(θ) sin(nθ) dθ = bn + βn.

1

π

ˆ 2π

0

sin(θ) sin(nθ) dθ = bn2n + βn2−n.

If n = 1 then

b1 + β1 = 0

2b1 +
1

2
β1 = 1

then

b1 =
2

3

β1 = −2

3
.

If n 6= 1, then

bn + βn = 0

2nbn +
1

2n
βn = 0

then

bn = 0

βn = 0.

So the solution is

u(r, θ) =

(
−r

3
+

4

3r

)
cos θ +

(
2r

3
− 2

3r

)
sin θ
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Exercise. 2. Problem 2, Lesson 34 What is the solution to the exterior
Dirichlet problem

PDE: ∇2u = 0 1 < r <∞

for the following BCs:

1. u(1, θ) = 1.

2. u(1, θ) = 1 + cos(3θ).

3. u(1, θ) = sin(θ) + cos(3θ).

4. u(1, θ) =

{
1 0 ≤ θ < π

0 π ≤ θ < 2π
.

Solution. 2. Since the problem is on the exterior, the general solution is
(after rejecting non-physical solutions)

u(r, θ) =

∞∑
n=0

αnr
−n cos(nθ) + βnr

−n sin(nθ).

Plugging in r = 1,

u(1, θ) =

∞∑
n=1

αn cos(nθ) + βn sin(nθ),

and observe that the given BCs are already in Fourier Sine/Cosine series, we
get

1. u(1, θ) = 1 =⇒ u(r, θ) = 1 .

2. u(1, θ) = 1 + cos(3θ) =⇒ u(r, θ) = 1 +
1

r3
cos(3θ) .

3. u(1, θ) = sin(θ) + cos(3θ) =⇒ u(r, θ) =
1

r
sin(θ) +

1

r3
cos(3θ) .

4. u(1, θ) =

{
1 0 ≤ θ < π

0 π ≤ θ < 2π
, then

α0 =
1

2
β0 = 0

αn =
1

π

ˆ π

0

cos(nθ) dθ = 0

βn =
1

π

ˆ π

0

sin(nθ) dθ =

{
0 n even
2
nπ n odd
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So,

u(r, θ) =
1

2
+

2

π

∞∑
j=0

1

(2j + 1)r(2j+1)
sin((2j + 1)θ)
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Exercise. 3. Problem 3, Lesson 34 The exterior Neumann problem

PDE: ∇2u = 0 1 < r <∞

BCs:
∂u

∂r
(1, θ) = g(θ) 0 ≤ θ ≤ 2π

has a solution that is the same form as the Dirichlet problem

u(r, θ) =

∞∑
n=0

r−n [an cos(nθ) + bn sin(nθ)]

but now the coefficients an, bn must satisfy the new BC. Substitute this solution
in the BC

∂u

∂r
(1, θ) = sin θ

in order to obtain the solution to

∇2u = 0 1 < r <∞
∂u

∂r
(1, θ) = sin θ

Does you solution check? Of course, once you have this solution, any constant
plus this solution is also a solution.

Solution. 3. Assuming the solution is of the form:

u(r, θ) =

∞∑
n=0

r−n [an cos(nθ) + bn sin(nθ)] ,

it follows that

∂u

∂r
(r, θ) =

∞∑
n=0

−nr−(n+1) [an cos(nθ) + bn sin(nθ)] .

At r = 1,

∂u

∂r
(1, θ) =

∞∑
n=0

−n [an cos(nθ) + bn sin(nθ)] = sin θ.

It is clear that b1 = −1, and other coefficients are zero. So,

u(r, θ) = −1

r
sin θ

It is easy to check that

∇2(u+ C) = urr +
1

r
ur +

1

r2
uθθ = 2

1

r3
sin θ − 1

r3
sin θ − 1

r3
sin θ = 0.
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And,

∂(u+ C)

∂r
(1, θ) =

1

r2
sin θ

∣∣∣∣
r=1

= sin θ.

So my solution checks, and any constant plus this solution is also a solution.
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Exercise. 4. Problem 1, Lesson 35 Substitute R(r) = rα into Euler’s
equation

r2R′′ + 2rR′ − n(n+ 1)R = 0

to find α = n,−(n+ 1).

Solution. 4. For R(r) = rα,

α(α− 1)r2rα−2 + 2αrrα−1 − n(n+ 1)rα = 0.

So,

α(α− 1) + 2α− n(n+ 1) = α2 + α− n(n+ 1) = 0.

The solutions to this quadratic equation are

α =
−1±

√
1 + 4n(n+ 1)

2
=
−1±

√
(2n+ 1)2

2
=
−1± (2n+ 1)

2
= n,−(n+ 1)
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Exercise. 5. Problem 2, Lesson 35 Make the change of variable x = cosφ
to change the old Legendre’s equation in φ

[sin(φ)Φ′]′ + n(n+ 1) sin(φ)Φ = 0 0 ≤ φ ≤ π

to the new Legendre’s equation in x

(1− x2)
d2Φ

dx2
− 2x

dΦ

dx
+ n(n+ 1)Φ = 0 − 1 ≤ x ≤ 1.

Solution. 5. For x = cosφ,

0 = [sin(φ)Φ′]′ + n(n+ 1) sin(φ)Φ

= cosφΦ′ + sinφΦ′′ + n(n+ 1) sinφΦ

= cosφ
dx

dφ

dΦ

dx
+ sinφΦ′′ + n(n+ 1) sinφΦ

= − cosφ sinφ
dΦ

dx
+ sinφΦ′′ + n(n+ 1) sinφΦ

Thus,

0 = − cosφ
dΦ

dx
+
dx

dφ

d

dx

(
dΦ

dx

dx

dφ

)
+ n(n+ 1)Φ

= − cosφ
dΦ

dx
+ sinφ

d

dx

(
dΦ

dx
sinφ

)
+ n(n+ 1)Φ

= − cosφ
dΦ

dx
+ sin2 φ

d2Φ

dx2
+ sinφ cosφ

1

− sinφ

dΦ

dx
+ n(n+ 1)Φ

= (1− cos2 φ)
d2Φ

dx2
− 2 cosφ

dΦ

dx
+ n(n+ 1)Φ

= (1− x2)
d2Φ

dx2
− 2x

dΦ

dx
+ n(n+ 1)Φ,

as desired.
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20.8 Problem set 8
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